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Abstract

In the study of time series analysis, it is of great interest to model a contin-
uous response for all the individuals at equally spaced time points. With the
rapid advance of social network sites, network data are becoming increasingly
available. In order to incorporate the network information among individuals,
Zhu et al. (2017) developed a network vector autoregression (NAR) model. The
response of each individual can be explained by its lagged value, the average of
its neighbors, and a set of node-specific covariates. However, all the individuals
are assumed to be homogeneous since they share the same autoregression coef-
ficients. To express individual heterogeneity, we develop in this work a grouped
NAR (GNAR) model. Individuals in a network can be classified into different
groups, characterized by different sets of parameters. The strict stationarity of
the GNAR model is established. Two estimation procedures are further devel-
oped as well as the asymptotic properties. Numerical studies are conducted to
evaluate the finite sample performance of our proposed methodology. At last,
two real data examples are presented for illustration purpose. They are the s-
tudies of user posting behavior on Sina Weibo platform and air pollution pattern
(especially PM2.5) in mainland China.
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1. INTRODUCTION

An important sign of the rapid development of Internet and mobile Internet is the

rise of social networks. Typical representatives include Facebook, Twitter, Sina Wei-

bo, and many others. Accordingly, network data are becoming increasingly available.

On one side, users (i.e., nodes) in a social network are no longer independent with

each other, but related through various relationships (e.g., friendship). On the other

side, plentiful covariates can be collected for each user, such as personal information,

consuming behavior, and textual records. As a result, network data play an impor-

tant role in various disciplines. They can be used to provide site user portraits (Lewis

et al., 2008), characterize social capital flow patterns (Bohn et al., 2014), and analyze

consumer behavior (Hofstra et al., 2015).

Mathematically, we use an adjacency matrix A = (aij) ∈ RN×N to represent the

network structure, where N is the total number of nodes. If the ith node follows the

jth one, we set aij = 1; otherwise aij = 0. For convenience, we always let aii = 0.

Other than that, we assume that a continuous response Yit ∈ R1 can be observed

for each node over time t. On social network platform, Yit could be the number of

characters posted by node i at time t, reflecting nodal activeness. Furthermore, we

denote Yt = (Y1t, · · · , YNt)> ∈ RN , and we are particularly interested in studying

the dynamic pattern of Yt. To this end, vector autoregression (VAR) models and the

corresponding dimension reduction methods are extensively used in the past literatures,

especially the factor models (Pan and Yao, 2008; Lam and Yao, 2012). Recently, Zhu

et al. (2017) proposed a network vector autoregression (NAR) model, which takes

network structure into account when modeling the dynamics of Yt.

By NAR, it is assumed that the response Yit is influenced by four factors, (a) its

lagged value Yi(t−1), (b) its socially connected neighbors n−1i
∑

j aijYj(t−1) with ni =
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∑
j aij, (c) a set of node-specific covariates Vi ∈ Rp, and (d) an independent noise εit.

As a result, the model is spelled out as

Yit = β0 + β1n
−1
i

∑
j

aijYj(t−1) + β2Yi(t−1) + V >i γ + εit, (1.1)

where β0, β1, β2, and γ are referred to as baseline effect, network effect, momentum

effect, and nodal effect respectively.

Although model (1.1) can be used to study the dynamic pattern of Yt when network

information is available, it treats all the nodes to be homogenous. For instance, by

the NAR model, the node-irrelevant network effect β1 implies that all the nodes are

influenced by their neighbors to the same extent. This is obviously unrealistic in

practice. Take Sina Weibo as an example, which is one of the most popular social

network platforms in China. Some nodes on the platform are super stars or political

leaders, and they have millions of fans. These nodes are referred to as opinion leaders

and less influenced by others (Wasserman and Faust, 1994). As a result, the network

effect (i.e., β1) for the opinion leaders should be small. On contrary, their followers

are more likely to be affected, which leads to a relatively large network effect for those

ordinary nodes.

From the above discussion, one can conclude that the baseline effect, network effect,

momentum effect, and nodal effect might be distinct for different group of nodes. By

the real data analysis, we indeed find that nodes in a network can be classified into

K groups, characterizing by different sets of parameters (e.g., β1k with k = 1, · · · , K).

Figure 1 shows that for the Sina Weibo dataset, nodes are classified into 3 groups, with

totally different coefficient estimates. To be more specific, compared to group 2, the

estimated network effect is much smaller of group 3 (i.e., β̂12 = 0.026 vs. β̂13 = 0.002).
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On the other hand, group 3 has a larger estimated momentum effect than that of group

2 (i.e., β̂22 = 0.396 vs. β̂23 = 0.958). This indicates that nodes in group 2 tend to

be affected by their connected neighbors, while those in group 3 are more likely to be

self-influenced.
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Figure 1: Coefficient estimates for 3 different groups. Distinct characteristics can be obvi-

ously detected for different groups of nodes.

In order to capture this interesting phenomenon, we propose in this work a grouped

network vector autoregression (GNAR) model. The GNAR model basically assumes

that nodes in a network can be classified into different groups, characterized by different

sets of parameters. The proposed model is related to the literature of clustering time

series data, where the most popularly used technique is model-based clustering estab-

lished with finite mixture models (Fröhwirth-Schnatter and Kaufmann, 2008; Juárez

and Steel, 2010; Wang et al., 2013). In this approach, each time series is assumed

to belong to one specific group, and each group is characterized by a different data

generating mechanism. The method is widely applied to gene expression classification

(Luan and Li, 2003; Heard et al., 2006), financial data modelling (Frühwirth-Schnatter
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and Kaufmann, 2006; Bauwens and Rombouts, 2007) and economic growth analysis

(Fröhwirth-Schnatter and Kaufmann, 2008; Juárez and Steel, 2010; Wang et al., 2013).

To our best knowledge, most of the above methods deal with independent univariate

time series and can be difficult to directly apply to network data.

In this article, we consider to group users according to their dynamic network behav-

iors. The network information is employed and embedded into modelling. Specifically,

Section 2 explicitly introduces the GNAR model, including the establishment of the

strict stationarity of Yt. In section 3, two estimation methods are developed, an EM

algorithm and a two step estimation procedure. The corresponding asymptotic prop-

erties are further built. A number of simulation studies are conducted in Section 4 in

order to demonstrate the finite sample performance of our methodology. Two real ex-

amples are studied in Section 5. The first dataset is about user posting collected from

Sina Weibo platform (the largest Twitter type social media in China). The second one

is a PM2.5 dataset, which are recorded across mainland China. At last, some conclud-

ing remarks are given in Section 6. All the technical proofs are left in the separate

supplementary material.

2. GROUPED NETWORK VECTOR AUTOREGRESSION

2.1. Model and Notations

Recall the NAR model defined in (1.1). We are interested in modeling the dynamics

of Yt. It can be noted that all the effects are invariant with node, which implies all

the nodes are homogenous. However, as discussed above, this assumption might be

too stringent in real practice. To fix this problem, we assume nodes in the network

can be classified into K groups, where each group is characterized by a specific set

of parameters θk = (β0k, β1k, β2k, γ
>
k )> ∈ Rp+3 for 1 ≤ k ≤ K. Let Ft be the σ-field
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generated by {Yis : 1 ≤ i ≤ N, 1 ≤ s ≤ t}. Given Ft−1, Y1t, · · · , YNt are assumed to be

independent and follow a mixture Gaussian distribution

K∑
k=1

αkf
(
β0k + β1kn

−1
i

∑
j

aijYj(t−1) + β2kYi(t−1) + V >i γk, σ
2
k

)
, (2.1)

where αk ≥ 0 satisfying
∑K

k=1 αk = 1 is the group ratio, and f(µ, σ2) is the probability

density function for normal distribution with mean µ and variance σ2. Model (2.1) is

referred to as grouped network vector autoregression model. Essentially, the GNAR

model specifies different dynamical patterns for each group through different set of

parameters. Following the NAR model, we refer to β0k, β1k, β2k, and γk as grouped

baseline effect, network effect, momentum effect, and nodal effect respectively.

In (2.1), it is not specified which group each node belongs to. We then assume the

ith node carries a latent variable zik ∈ {0, 1}. Specifically, zik = 1 if i is from the kth

group, otherwise zik = 0. As a result, the GNAR model (2.1) can be written as

Yit =
K∑
k=1

zik

(
β0k + β1kn

−1
i

∑
j

aijYj(t−1) + β2kYi(t−1) + V >i γk + σkεit

)
, (2.2)

where εit is the independent noise term, and follows standard normal distribution. One

could further represent the GNAR model in a random coefficient form as

Yit = b0i + b1in
−1
i

∑
j

aijYj(t−1) + b2iYi(t−1) + V >i ri + δiεit, (2.3)

where bji =
∑

k zikβjk for 0 ≤ j ≤ 2, ri =
∑

k zikγk, and δi =
∑

ik zikσk. Note that

(2.3) can be seen as a generalized extension of the NAR model. The main differences

lie in two aspects, (a) the effects (i.e., coefficients) are all node-specific, reflecting the

heterogenous characteristics of each node, and (b) all the parameters are random (i.e.,
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linear combination of the latent variables zik). This makes the GNAR model (2.3)

more flexible and realistic in practice.

Remark 1. The GNAR model (2.3) takes only one lag information into considera-

tion. As a flexible extension, one could consider the GNAR(p) model by taking more

historical information as,

Yit = b0i +

q∑
m=1

b
(m)
1i n

−1
i

N∑
j=1

aijYj(t−m) +

p∑
m=1

b
(m)
2i Yi(t−m) + V >i ri + δiεit, (2.4)

where b
(m)
1i =

∑
k zikβ

(m)
1k and b

(m)
2i =

∑
k zikβ

(m)
2k . Similarly, the theoretical properties

and estimation methods can be extended with the GNAR(p) model (2.4). In this work,

we only focus on the GNAR model with one lag for simplicity.

Recall Yt = (Y1t, · · · , YNt)> ∈ RN is the vector of responses at time t. Let Dk =

diag{zik : 1 ≤ i ≤ N} ∈ RN×N with 1 ≤ k ≤ K. Further define V = (V1, · · · , VN)> ∈

RN×p and B0 =
∑K

k=1Dk(B0k + Vγk) ∈ RN , where B0k = β0k1 ∈ RN and 1 =

(1, · · · , 1)> with compatible dimension. Similarly, write B1 =
∑K

k=1DkB1k ∈ RN×N

and B2 =
∑K

k=1DkB2k ∈ RN×N , where Bjk = βjkI ∈ RN×N for j = 1, 2 and I is the

identity matrix with compatible dimension. Then the GNAR model can be written in

a vector form as

Yt = B0 + GYt−1 + Et, (2.5)

where G = B1W + B2, W = diag{n−11 , · · · , n−1N }A is the row-normalized adjacency

matrix, and Et = (δ1ε1t, · · · , δNεNt)> ∈ RN is the noise vector.

2.2. Strict Stationarity of GNAR

As long as we derive (2.5), it is important to study the strict stationarity of the

GNAR model. When N is fixed, we have the following theorem.
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Theorem 1. Assume E‖Vi‖ <∞ and N is fixed. If max1≤k≤K(|β1k|+ |β2k|) < 1, then

there exists a unique stationary solution {Yt} with E‖Yt‖ < ∞ to the GNAR model

(2.5). The solution takes the form:

Yt = (I − G)−1B0 +
∞∑
j=0

GjEt−j. (2.6)

The proof of Theorem 1 is given in Section 2 in the supplementary material. Regarding

Theorem 1, we have the following remarks.

Remark 2. Given group label Z = {zik : 1 ≤ i ≤ N, 1 ≤ k ≤ K}, define conditional

expectation of Yt as µY = E(Yt|Z) = (I − G)−1b0, where b0 = (b01, · · · , b0N)> ∈ RN .

More specifically, denote µY = (µ1, · · · , µN)> ∈ RN . As discussed before, Yit could be

the number of posts a node made on social network platform. As a result, µY can be

seen as nodal activeness level and is of great interest to be investigated. Further let

Mk = {i1, · · · , iNk
} be the collection of node indexes of the kth group, and |Mk| = Nk

is the group size. It can be verified that the conditional expectation for nodes belonging

to the same group is identical, i.e., µi1 = · · · = µiNk
= νk.

Remark 3. In addition to the conditional mean, we also study the conditional covari-

ance of Yt. For any integer h, define the auto covariance function of Yt given Z as

Γ(h) = cov(Yt,Yt−h|Z). It can be verified that Γ(0) = (I − G)−1ΣV(I − G>)−1 + ΣE ,

where ΣV = diag{
∑K

k=1 zik(γ
>
k ΣV γk) : 1 ≤ i ≤ N} with ΣV = cov(V1), and vec(ΣE) =

(I − G ⊗ G)−1vec(Σe) with Σe = diag{
∑K

k=1 zikσ
2
k : 1 ≤ i ≤ N}. It can be further

verified that Γ(h) = GhΓ(0) for h > 0 and Γ(h) = Γ(0)(G>)−h for h < 0.

To better understand (2.6), we consider a special network structure, the “core-

periphery” network. Specifically, there are two groups of nodes in this kind of network,

the core (i.e., group 1) and the periphery (i.e., group 2). Nodes in the core group are
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often celebrities who has a number of followers. While nodes in the periphery group

have very few followers and they are influenced by the core. Figure 2 is a diagram of

the core-periphery network.

Figure 2: The core-periphery network structure. Blue circle represents the core, while pink

the periphery. The core and the periphery can be seen as two different groups, identifying

by their own regression coefficients. The arrow represents the direction of the relationship.

Without loss of generality, let the first s nodes be the first group and the left

N − s another. Accordingly, let W = (W11,W12;W21,W22) be the partition of the

two groups. Edges are seldom observed from the core to the periphery or among the

periphery. Accordingly , we set W12 = 0 and W22 = 0. It can be analytically computed

that the conditional expectation of the two groups are ν1 = β01/(1 − β21 − β11) and

ν2 = (1− β22)−1(β02 + β12ν1). In such a case, the conditional mean for the core is only

determined by its own coefficients (i.e., β01, β11, and β21). However, the activeness

level of the periphery is also influenced by the core through the term β12ν1.

3. PARAMETER ESTIMATION
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In this section, we discuss the estimation of the GNAR model. Note that the group

label zik is latent. Therefore, parameter estimation and group detection need to be

conducted at the same time. Since the procedure might not be straightforward, as a

starting point, we assume the group label is known. In fact, this can be useful when

the groups are pre-determined by some preliminary knowledge.

3.1. Estimation When Group Label is Known

Define Y(k)
t = (Yit : i ∈ Mk)

> ∈ RNk , W (k) = (wij : i ∈ Mk, 1 ≤ j ≤ N) ∈ RNk×N ,

V(k) = (Vi : i ∈ Mk)
> ∈ RNk×p, and E (k)t = (εit : i ∈ Mk)

> ∈ RNk . Then the GNAR

model (2.3) can be rewritten as

Y(k)
t = β0k + β1kW

(k)Yt−1 + β2kY(k)
t−1 + V(k)γk + σkE (k)t , (3.1)

for k = 1, · · · , K. Let Xit = (1, w>i Yt, Yit, V
>
i )> ∈ Rp+3, where wi is the ith row of W .

Further let X(k)
t = (X>it : i ∈ Mk) ∈ RNk×(p+3). Recall that θk = (β0k, β1k, β2k, γ

>
k )> ∈

Rp+3. Then (3.1) could be written as Y(k)
t = X(k)

t θk+σkE (k)t . Subsequently, the ordinary

least squares (OLS) estimator can be obtained for the kth group as

θ̂k =
( T∑
t=1

X(k)>
t−1 X(k)

t−1

)−1( T∑
t=1

X(k)>
t−1 Y(k)

t

)
. (3.2)

It is then of great interest to investigate the asymptotic properties of θ̂k.

Define µ
(k)
Y = (µi : i ∈ Mk)

> ∈ RNk . In addition, let ΣY = Γ(0) = (σy,ij) ∈ RN×N ,

Σ
(k)
Y = (σy,ij : i ∈ Mk, 1 ≤ j ≤ N) ∈ RNk×N , and Σ

(k,k)
Y = (σy,ij : i ∈ Mk, j ∈ Mk) ∈

RNk×Nk . The following technical conditions are required.

(C1) (Group Size) Assume that minkNk = O(N δ), where 0 < δ ≤ 1.

10



(C2) (Independence Assumption) Assume that Vis are independent and identically

distributed random vectors with E(V1) = 0, cov(V1) = ΣV ∈ Rp×p, and finite

fourth order moment. Assume εits are independent and identically distributed.

In addition, assume {Vi} and {εit} are mutually independent.

(C3) (Network Structure) Assume W is a sequence of matrices indexed by N .

They are assumed to be non-stochastic.

(C3.1) (Connectivity) Treat W as a transition probability matrix of a Markov

chain with state space to be the set of all the nodes in the network (i.e., {1, · · · , N}).

Suppose the Markov chain is irreducible and aperiodic. Further define π =

(π1, · · · , πN)> ∈ RN as the stationary distribution of the Markov chain, such

that (a) πi ≥ 0 with
∑N

i=1 πi = 1, and (b) π = W>π. Furthermore,
∑N

i=1 π
2
i is

assumed to converge to 0 as N →∞.

(C3.2) (Uniformity) Define W ∗ = W + W> as a symmetric matrix. Assume

λmax(W
∗) = O(logN) and λmax(WW>) = O(N δ′) for δ′ < δ, where λmax(M)

stands for the largest absolute eigenvalue of an arbitrary symmetric matrix M ,

and δ is defined in (C1).

(C4) (Law of Large Numbers) Assume the following limits exist: c
(k)
1β = limNk→∞

N−1k (1>W (k)µY ), c
(k)
2β = limNk→∞N

−1
k (1>µ

(k)
Y ), Σ

(k)
1 = limNk→∞N

−1
k {µ

(k)>
Y µ

(k)
Y +

tr(W (k)>W (k)ΣY )}, Σ
(k)
2 = limNk→∞N

−1
k {(µ

(k)>
Y W (k)µY ) + tr(W (k)Σ

(k)>
Y )}, and

Σ
(k)
3 = limNk→∞N

−1
k {(µ

(k)>
Y µ

(k)
Y ) + tr(Σ

(k,k)
Y )} for k = 1, · · · , K.

Condition (C1) is an assumption on group size, which assumes that the diverging

speed of all groups should be at least faster than O(N δ) for δ > 0. It is remarkable that

the unbalanced group size is allowed, which could widely exist in real practice. Next,

condition (C2) is a regular assumption imposed on the nodal covariates Zi and noise
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term εit. Condition (C3) sets constraints on the network structure W . Specifically,

condition (C3.1) requires certain extent of connectivity should exist for the network.

Here a sufficient condition for the irreducibility of the Markov chain is that, there

should exist a path with finite length between two arbitrary nodes. Condition (C3.2)

restricts the heterogeneity of the nodes in the network, which requires the divergence

rate of λmax(W
∗) and λmax(WW>) should not be too fast. Lastly, condition (C4) is a

law of large numbers condition for each group. It assumes the limits of certain network

features exist as Nk →∞ for k = 1, · · · , K.

Theorem 2. Assume maxk(|β1k| + |β2k|) < 1 and Conditions (C1)–(C4). We have

√
NkT (θ̂k − θk) = Op(1) as min{Nk, T} → ∞.

The proof of Theorem 2 is given in Section 3 in a supplementary material. By Theorem

2, one could see that the
√
NkT -consistency can be obtained for the estimator θ̂k.

3.2. An EM Algorithm

Although the OLS estimation in (3.2) is simple and straightforward, it can be

limited since the group label is unknown. Recall that the latent variable zik ∈ {0, 1}

indicates whether the ith user belongs to the kth group. Denote Θ as the parameter

space. The full likelihood function is given as

L(Θ) =
N∏
i=1

K∏
k=1

[
T∏
t=1

αkφ
{
σ−1k (Yit −X>it θk)

}]zik
, (3.3)

where φ(·) is the probability density function of the standard normal distribution. We

then adopt an EM algorithm for parameter estimation. In particular, after setting

an initial value θ̂(0), we iterate the following steps. Specifically, in the mth (m ≥ 1)

iteration, we have that
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E-Step. Estimate zik by its posterior mean z
(m)
ik . Here,

z
(m)
ik = E

(
zik|θ̂(m−1)

)
=

α̂
(m−1)
k

∏T
t=1 φ(∆̂

(m−1)
it,k )∑K

k=1 α̂
(m−1)
k

∏T
t=1 φ(∆̂

(m−1)
it,k )

, (3.4)

where ∆̂
(m−1)
it,k = (Yit−X>i(t−1)θ̂

(m−1)
k )/σ̂

(m−1)
k , and θ̂

(m−1)
k , σ̂

(m−1)
k are the estimates from

the (m− 1)th iteration.

M-Step. Given z
(m)
ik , we then maximize (3.3) with regarding to αk, θk, and σk.

Particularly, we have

θ̂
(m)
k =

(∑
i

z
(m)
ik

∑
t

XitX
>
it

)−1(∑
i

z
(m)
ik

∑
t

XitYit

)
, (3.5)

(
σ̂2
k

)(m)
=
(
T
∑
i

zik

)−1{∑
i

z
(m)
ik

∑
t

(Yit −X>it θ̂
(m)
k )2

}
, α̂

(m)
k = N−1

( N∑
i

z
(m)
ik

)
.

(3.6)

Repeat the above steps until the EM algorithm converges and the final results are the

desired estimators.

It can be noted that the estimation given by (3.5) is in spirit similar to (3.2).

Particularly, the EM estimation of θk can be treated as a weighted OLS estimator,

where the weights are the latent group variables zik. In addition, the estimation of σ2
k

and αk in (3.6) can be comprehended in similar way.

3.3. A Two Step Estimation Method

In real practice, the computation of the E-Step (3.4) might be not stable when

the time dimension T is large. That makes the estimation result in M-Step might

not be reliable. Note that (2.3) can be treated as a random coefficient model with

node-specific coefficients. Motivated by this fact, we consider a two step estimation
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procedure as an alternative. In the first step, we estimate the coefficient at the nodal

level. Secondly, these estimates are pooled together to obtain the parameter estimation

θ̂k for k = 1, · · · , K. For convenience, we assume (β1k, β2k)
> are not the same between

different groups.

Specifically, let bi = (b0i + V >i γi, b1i, b2i)
> ∈ R3. Write X it = (1, w>i Yt, Yit)

> ∈ R3.

Then the estimates for bi can be obtained as

b̂i =
( T∑
t=1

X i(t−1)X
>
i(t−1)

)−1( T∑
t=1

X i(t−1)Yit

)
. (3.7)

Note that (3.7) is the ordinary least squares estimation for each node. Intuitively, this

estimate will approximate the true value bi well when T is sufficiently large.

Theorem 3. Assume N = o(exp(T )), the stationary condition maxk(|β1k| + |β2k|) <

1, and conditions (C1)–(C4). In addition, assume there exists τ > 0, such that

mini{(e>i ΣY ei)(w
>
i ΣYwi) − (e>i ΣYwi)

2} ≥ τ with probability tending to 1. Then we

have sup1≤i≤N ‖b̂i − bi‖ = op(1).

The proof of Theorem 3 is given in Section 4 in a supplementary material. Re-

garding the term appeared above (e>i ΣY ei)(w
>
i ΣYwi) − (e>i ΣYwi)

2, we rewrite it as∑
i

∑
j1,j2

∆ij1j2wij1wij2(σ̃y,j1j2 − σ̃y,ij1σ̃y,ij2), where ∆ij1j2 = σy,iiσy,j1j1σy,j2j2 and σ̃y,ij =

cor(Yit, Yjt). Then the condition can be satisfied if σy,ii and ∆̃ij1j2 = σ̃y,j1j2 − σ̃y,ij1σ̃y,ij2

are lower bounded away from 0, with probability tending to 1 for triplets set {(i, j1, j2) :

aij1aij2 = 1, i 6= j1, i 6= j2}. Given the results in Theorem 3, it is noteworthy that the

overall estimation bias (i.e., supi ‖b̂i − bi‖) can be controlled as the diverging speed of

time T is slightly faster than log(N) (i.e., log transformed network size).

Based on the theoretical result of Theorem 3, we consider the second step for

estimation. Ideally, the estimated values b̂i will form K clusters (i.e., groups) by
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the cluster algorithm. The corresponding group members are collected in M̂k, where

N̂k = |M̂k|. Then the group ratio αk can be directly estimated by α̂k = N̂k/N .

Subsequently, given this estimated group information, one can be able to conduct the

estimation by using the same procedure (3.2) in section 3.1. Specifically, θk can be

estimated by

θ̂TSk =
( T∑
t=1

∑
i∈M̂k

Xi(t−1)X
>
i(t−1)

)−1( T∑
t=1

∑
i∈M̂k

Xi(t−1)Yit

)
,

which is referred to as the two step (TS) estimator. Theoretically, one could expect

the consistency result of θ̂TSk if all nodes are clustered into their true groups with

probability tending to 1 (Hartigan, 1981; Pollard, 1981; Von Luxburg et al., 2008).

This can be guaranteed by the result of Theorem 3 when abundant time information

can be obtained.

4. NUMERICAL STUDIES

4.1. Simulation Models

To demonstrate the finite sample performance of our proposed methodology, we

conduct a number of numerical studies in this section. Specifically, the first two ex-

amples are presented with different types of network structures. The third example is

displayed to study the parameter estimation and prediction accuracy when the number

of groups pis misspecified. In each example, different estimation methods (EM and TS)

are employed and compared.

For each example, we fix the number of groups K = 3 and generate the random

innovations εit from a standard normal distribution. For convenience, we set δk = 1
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for k = 1, · · · , K. In addition, nodal covariates Vi = (Vi1, · · · , Vi5)> ∈ R5 are indepen-

dently sampled from a multivariate normal distribution with mean 0 and covariance

Σv = (σj1j2) with σj1j2 = 0.5|j1−j2|. The true value of the parameters for each group

is listed in Table 1. Furthermore, let σ2 = 1 for Example 1 and 2, while σ2 = 4 for

Example 3. Given the initial value Y0 = 0, the time series Yt is generated according

to the GNAR model (2.3). Particularly, the first 50 replications are dropped to ensure

the time series to achieve stationarity.

It should be particularly noted that different network and momentum effects are

employed for each group to distinguish nodal behaviors. As shown in Table 1, Group 1

has relatively lower activeness level with small positive network and momentum effects

(i.e., β1 and β2). Group 2 is characterized by its negative network effect (i.e., β1),

which implies nodal behaviors in this group exhibit a negative correlated pattern with

their connected friends. Lastly, compared with the other two groups, Group 3 occupies

a larger portion (i.e., α) and has higher momentum effect (i.e., β2). Subsequently, we

introduce two typical network structures employed in the simulation studies.

Example 1. (Stochastic Block Model) First of all, we consider the block

structure network, which is also known as the stochastic block model (Wang and Wong,

1987; Nowicki and Snijders, 2001; Zhao et al., 2012). This model assumes that nodes

in the same block are more likely to be connected. To generate such model, we follow

Zhu et al. (2017) to set J ∈ {5, 10, 20} blocks and randomly assign each node a block

label with equal probability. Next, let P (aij = 1) = 0.3N−0.3 if i and j are from the

same block, otherwise set P (aij = 1) = 0.3N−1. Consequently, nodes within the same

block will have higher probability to connect than nodes from different blocks.

Example 2. (Power-law Model) In real network, it can be observed that a

small portion of nodes (e.g., super stars and opinion leaders) have a large amount of
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network links, but the majority have limited number of connections. This phenomenon

can be described by the power-law model (Barabási and Albert, 1999). Specifically, we

generate the nodal in-degrees di =
∑

j aji from a power-law distribution, i.e., P (di =

d) = cd−α, where c is a normalizing constant and α is the exponent parameter. We set

α = 2.5 as suggested by Clauset et al. (2009), which is based on empirical studies with

real social network data.

Example 3. (Number of Groups) In this example, we evaluate the impact

on parameter estimation and prediction accuracy when the numberp of groups K

is incorrectly specified. Specifically, data are generated from the power-law model

described in Example 2 with total time periods (T + 20). The first T time periods are

used for parameter estimation, and the rest 20 periods for prediction. Lastly, we set

K = 1, 2, 3, 5, 7, where K = 3 is the true number of groups.

4.2. Performance Measurements and Simulation Results

For each simulation example, we consider different network sizes N = 100, 200, 500.

Accordingly, to evaluate the performances of the two proposed estimation methods,

we employ two settings of T as T = N/2 and T = 2N respectively. For a reli-

able result, we randomly repeat the simulation experiments for R = 1000 times. Let

(β̂
(r)
0k , β̂

(r)
1k , β̂

(r)
2k , γ̂

(r)>
k )> ∈ Rp+3 be the estimator of the kth group obtained from the

rth replication. In addition, for each node, we are able to obtain its group label as

ẑ
(r)
i for i = 1, · · · , N . Specifically, for the EM algorithm, the group label is defined as

ẑ
(r)
i = arg maxk{ẑik}. For the two step estimation, the group label is the same with

the cluster label after the first step estimation. Subsequently, we consider the following

measurements for evaluation of numerical results.

First, for a given parameter, the root mean square error (RMSE) is employed to
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evaluate the estimation accuracy. Take the network effect β1 = (β1k : 1 ≤ k ≤

K)> ∈ RK for example. The RMSE is calculated over all groups as RMSEβj =

{(RK)−1
∑K

k=1

∑R
r=1(β̂

(r)
jk − βjk)2}1/2. Similarly, the RMSE can be computed for base-

line effect (i.e., RMSEβ0) and momentum effect (i.e., RMSEβ2) respectively. In addi-

tion, the RMSE for the nodal effect is defined as RMSEγ = {(RK)−1
∑K

k=1

∑R
r=1 ‖γ̂

(r)
k −

γk‖2}1/2. Next, given the estimated groups ẑ
(r)
i , the misclassification rate (MCR) can

be calculated as MCR = (NR)−1
∑R

r=1

∑N
i=1 I(ẑ

(r)
i 6= zi), where zi is the true group

label of the node i. Lastly, the average network density (i.e., {N(N−1)}−1
∑

i1,i2
ai1i2)

is also reported.

Lastly, when the number of groups K is misspecified (i.e., Example 3), we evalu-

ate the impact on parameter estimation and prediction accuracy. Denote Ŷ(K)
t as the

fitted response for t = 1, · · · , T and predicted value for t = T + 1, · · · , T + 20, where

the superscript K indicates the number of groups. In order to evaluate the parameter

estimation accuracy, we compare the fitted value Ŷ(K)
t against the conditional expecta-

tion E(Yt|Ft−1,Z). This is because the comparison cannot be directly conducted for

parameter estimation error when group number K is misspecified. We then define the

estimation error as

Err
(K)
est =

{
(NT )−1

T∑
t=1

∥∥Ŷ(K)
t − E(Yt|Ft−1,Z)

∥∥2}1/2,
where Ft−1 is the σ-field generated by {Ys : s ≤ t − 1} and E(Yt|Ft−1,Z) is the

conditional expectation based on the historical and group information. Next, the

prediction error is measured by

Err
(K)
pred =

{
(20N)−1

T+20∑
t=T+1

∥∥Ŷ(K)
t − Yt

∥∥2}1/2,

18



which is the RMSE for predicted values. The median values of both Err
(K)
est and Err

(K)
pred

over all replications are reported.

The detailed results are given in Tables 2–4. For the first two examples, it is found

that as the network size N and time period T increase, the RMSEs of all estimated

parameters decrease towards 0 for both EM algorithm and two step (TS) estimation.

In addition, similar pattern can be observed for the MCR, which drops as the network

size and time period (i.e., N and T ) increase. For a finite sample comparison, it can

be observed that the EM algorithm outperforms TS estimation in Scenario 1 when less

time information can be obtained (i.e., small T ). Specifically, lower RMSE and MCR

values are observed. However, the TS estimation has greater advantage over the EM

algorithm in Scenario 2 in both parameter estimation and group classification. Lastly,

for Example 3, it is found that both the estimation and prediction errors drop sharply

from K ≤ 2 to K = 3, where the model is correctly specified with K = 3. In the

meanwhile, for K ≥ 3, it is observed that the estimation and prediction errors perform

relatively steady.

5. CASE STUDY

In this section, we conduct two case studies to evaluate our proposed methods.

The first is about user posting behavior on social network platform. The second is the

study of dynamic and spatial pattern of PM2.5. The adjacency matrix is constructed

between cities by taking advantage of their spatial locations.

5.1. User Behavior Analysis: A Sina Weibo Dataset

We first apply the proposed GNAR model to a social network dataset. The data

are collected from Sina Weibo, which is the largest Twitter type social media in China.
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Users are allowed to follow other users, create user profiles, and post Weibo to express

their opinions. In addition to ordinary users, the celebrities, public media, as well as

companies and organizations are also allowed to register on Sina Weibo. Therefore, the

background of users can be diversified, leading to different user behaviour patterns.

Data Description

To investigate user behaviour on Weibo, we collect data of N = 2, 021 followers of

an official account, starting from 2014-01-01 for a total of T = 11 consecutive weeks.

The response Yit is defined to be log(1 + x)-transformed average Weibo post length

(i.e., the average number of characters posted by the user in a week), which can be

seen as a representative of nodal activeness level. The histogram of the response is

displayed in Figure 3, where an approximately symmetric shape can be observed. In

addition, two node-specific variables are recorded, the gender of the user (i.e., male =

1 and female = 0), and the number of personal labels (i.e., keywords created by the

Weibo users to describe their life status and interests).

The network adjacency matrix A can be constructed as follows, aij = 1 if the ith

user follows the jth one on Weibo, otherwise aij = 0. Particularly, the adjacency

matrix is asymmetric since users are not required to be mutually connected on Weibo.

We visualize the distribution of nodal in-degree (i.e., a+i =
∑

j aji) and out-degree

(i.e., ai+ =
∑

j aij) in Figure 4. It can be detected that the distribution of in-degree

is more skewed than that of out-degree. This implies there might exist users who

attract a large amount of followers. In addition, the network density is 2.7% (i.e.,∑
i,j aij/{N(N − 1)}), which indicates a relatively sparse network.

20



Log Weibo Post Length

F
re

qu
en

cy

0 2 4 6 8

0
50

0
10

00
20

00
30

00

Figure 3: The histogram of responses (i.e., log-transformed weibo post length).

In−degree

F
re

qu
en

cy

0 200 400 600 800

0
50

0
10

00
15

00

Out−degree

F
re

qu
en

cy

0 50 100 150 200 250 300

0
10

0
20

0
30

0
40

0
50

0

Figure 4: The histogram of nodal in- and out-degree of N = 2, 021 nodes. A heavily skewed

shape can be detected for nodal in-degree, which indicates the existence of “super stars” in

the network.

Model Estimation and Explanation

Subsequently, we fit the GNAR model on this dataset. Only EM algorithm is
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applied, since the network size N is much larger than the number of time periods T .

The number of groups is fixed to be K = 3 and the estimation results are given in

Table 5. One could see that the estimated network effect and momentum effect are

all positive for three groups. This suggests user activeness level is positively related to

itself as well as that of its following neighbors. Moreover, a stronger momentum effect

can be detected compared with the network effect. At last, the estimated nodal effects

indicate that the male users with more self-created labels exhibit higher activeness

levels.

For further illustration, we conduct comparison among groups. It can be noted

that Group 1 and Group 2 occupy a large portion of all network users (with larger

estimated α values). Specifically, they both have larger network effects (i.e., the esti-

mated β1 values) than that of Group 3, implying that users in these two groups tend

to be influenced by the ones they follow. When looking at momentum effect (i.e., the

estimated β2 values), it can be observed that users in Group 1 and 3 are more self-

motivated than Group 2. Particularly, Group 3 has the largest momentum effect while

the smallest network effect. This indicates user behavior of this group can be highly

predictable by the history.

Moreover, we draw the boxplot of the responses in a grouped manner in Figure 5.

A higher activeness level can be found for Group 3. Actually, users in this group are

mostly public media accounts and celebrities with a large amount of followers, such as

“Sina Finance”, “Xinhua Views”, “Beijing Youth Daily”, “Phoenix TV”, and many

others. These accounts generate contents and release information on the platform fre-

quently such that they can pass information and influence other users. On contrary,

most users in Group 1 and Group 2 are ordinary users who play the role of information

adopters. Lastly, we conduct a model comparison with the network vector autoregres-
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sion model (Zhu et al., 2017), and the univariate autoregression (AR) model. The first

9 weeks are used for model training, and the last 2 weeks are employed for prediction

evaluation. The predictive root mean square error (RMSE) is used to quantify the

prediction accuracy of different models, which are 0.809, 0.850, and 2.312 respectively.

It can be observed the predictive RMSE of GNAR is lower than that of NAR and AR,

which indicates a better prediction power of the GNAR model.

Figure 5: The boxplot of log-transformed weibo post length for each group.

5.4. Air Pollution Analysis: A PM2.5 Dataset

In recent years, the issue of air pollution in China has drawn world wide attentions.

One particular air pollution is called PM2.5, which refers to the airborne particles with

aerodynamic diameters less than 2.5 micrometers. There have been evidences that

the high concentration of PM2.5 may cause severe clinical symptoms, such as lung

morbidity, respiratory and cardiovascular diseases. Hence, it is of great importance to

understand the PM2.5 distribution and diffusion pattern across China.

Data Description
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The PM2.5 data are collected from air quality monitoring stations over 291 cities

in mainland China. Specifically, the daily PM2.5 index (unit: µg/m3) is recorded from

2015-01-01 to 2015-12-31 with T = 365. The left in Figure 6 gives the time series

of average daily PM2.5 of all cities during 2015. A high PM2.5 level can be found in

winter (November, December, and January) with highest PM2.5 over 100µg/m3. We

then take the yearly average of PM2.5 in each city and display it in Figure 7, where

darker regions imply higher PM2.5 levels. Spatially, the northeastern regions in China

(especially in Heibei province) exhibit higher concentration of PM2.5.

The response is defined as the log-transformed PM2.5 levels, where the histogram

is displayed in the right of Figure 6. A symmetric shape can be observed. In order to

construct the network structure, we treat each city as a node. The adjacency matrix

A is constructed by using spatial distances between any two cities. Let s1, · · · , sN

(si ∈ R2) be the locations of N cities. Then aij is defined as aij = 1/‖si− sj‖ for i 6= j

and aii = 0 for i = 1, · · · , N .

Figure 6: The left panel: daily average PM2.5 in the year of 2015; The right panel: the

histogram of log-PM2.5.
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Figure 7: Average PM2.5 for each city in the year of 2015. The grey color indicates absence

of PM2.5 monitoring stations in corresponding cities.

Model Estimation and Explanation

Motivated by the descriptive analysis, we model the dynamic patterns of different

seasons separately, which are spring (March to May), summer (June to August), au-

tumn (September to November), and winter (January to February). Intuitively, the

number of groups should be large in winter since the pollution level is relatively high.

As a result, we set K = 3 for winter while K = 2 for the other seasons. The GNAR

model, NAR model, and AR model are estimated for prediction comparison. The G-

NAR model is estimated using the proposed EM algorithm and two step estimation

method respectively. For each season, the last 10 days are used to conduct prediction,

and the prediction RMSEs are summarized in Table 6. It can be observed that the

EM algorithm always outperforms other methods in terms of prediction accuracy. We

next illustrate the detailed estimation results by taking advantage of EM algorithm.

The estimated regression coefficients are given in Table 7. We take the results of

winter for detailed explanation. First of all, the number of cities in 3 groups is un-
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balanced, where the proportions are 0.30, 0.12, and 0.58 respectively. It is noteworthy

that the first and second group have relatively large baseline effect, which indicates

that air pollution in these cities is much more severe. From Figure 8, it can be ob-

served that cities in group 1 and 2 locate in northeastern China. Furthermore, cities in

group 1 and 3 have large network effect, which implies that cities in group 1 and 3 are

more likely to be influenced by their spatial neighbors. For the other seasons, it can

be detected that the patterns in summer and autumn are very similar. This is mainly

because that the pollution level is relatively lower in those two seasons.

Regarding this real example, we have two more remarks to make. Firstly, it can be

noted that the network structure in this example is symmetric (i.e., aij = aji). Recall

that when the network structure is asymmetric (as in the social network case), the term

n−1i
∑

j aijYj(t−1) represents the averaged responses of those nodes that i follows. As a

result, network effect β1 can be viewed as the “influence” that i receives from the nodes

it follows (i.e., those js with aij = 1). When the adjacency matrix is symmetric as

shown in this example, the term n−1i
∑

j aijYj(t−1) represents the averaged responses of

those nodes that i is connected to. The corresponding parameter β1 can be understood

as the “connection” or “correlation” rather than “influence” that node i receives from

its connected neighbours. Secondly, in this example, no node-specific covariates are

utilized due to our lack of access to more information. It would be an important future

research topic to consider nodal effect variables (i.e., Vi) such as temperature, humidity

and wind speed into the modelling framework.
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Figure 8: Different groups of cities detected by EM algorithm for spring (left top panel),

summer (right top panel), autumn (left bottom panel), and winter (right bottom panel).

Cities in Group 1, 2, 3 are marked as red, blue, and yellow.

6. CONCLUDING REMARKS

In this article, we develop a novel GNAR model, which incorporates group specific

network autoregression coefficients. To estimate the GNAR model, an EM algorithm

and a two step estimation are designed. It is suggested by the numerical result that

both methods produce consistent results, while they could have different finite sam-

ple performances with different scenarios. Lastly, the Sina Weibo and PM2.5 datasets

are analyzed for illustration propose, where nodes in the different groups show distin-

guished behavioral patterns.

To facilitate future research, we discuss here several interesting topics. First, it

can be noted that although the estimation and group classification procedure have

been developed in this work, however, it is not flexible to conduct inference about the
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estimated parameters. Therefore, how to make inference can be a problem of interest.

Next, for the proposed estimation methods of the GNAR model, the number of groups

K needs to pre-specified. Hence how to select K remains to be a challenging task.

Lastly, it is assumed that the users can be grouped by their dynamic behavior patterns,

which are further quantified by the network autoregression coefficients. As a further

extension, one could consider incorporating user network structure information (e.g.,

the following-followee information of the focal user) together to decide their groups.

APPENDIX

We present here the detailed technical proofs of Lemma 1–Lemma 4 in Appendix

A. Next, the proofs of Theorem 1 to Theorem 3 are given in Appendix B, C, and D

respectively.

Appendix A. Four Useful Lemmas

Lemma 1. Let X = (X1, · · · , Xn)> ∈ Rn, where Xis are independent and identical-

ly distributed random variables with mean zero, variance σ2
X and finite fourth order

moment. Let Ỹt =
∑∞

j=0G
jUEt−j, where G ∈ Rn×n, U ∈ Rn×N , and {Et} satisfy Con-

dition (C1) and are independent of {Xi}. Then for a matrix A = (aij) ∈ Rn×n and a

vector B = (b1, · · · , bn)> ∈ Rn, it holds that

(a) n−1B>X →p 0 if n−2B>B → 0 as n→∞.

(b) n−1X>AX →p σ
2
X limn→∞ n

−1tr(A) if the limit exists, and n−2tr(AA>)→ 0 as n→

∞.

(c) (nT )−1
∑T

t=1B
>Ỹt →p 0 if n−1

∑∞
j=0(B

>GjUU>(G>)jB)1/2 → 0 as n→∞.
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(d) (nT )−1
∑T

t=1 Ỹ>t AỸ>t →p limn→∞ n
−1tr{AΓ(0)} if the limit exists, and n−1

∑∞
i=0∑∞

j=0[tr{U>(G>)iAGjUU>(G>)jA>GiU}]1/2 → 0 as n→∞.

(e) (nT )−1
∑T

t=1X
>AỸ>t →p 0 if n−1

∑∞
j=0[tr{AGjUU>(G>)jA>}]1/2 → 0 as n →

∞.

Proof: The detailed proof can be found in Lemma 1 of Zhu et al. (2017).

Lemma 2. Assume minkNk = O(N δ) and the stationary condition cβ < 1, where

cβ = maxk(|β1k| + |β2k|). Further assume Conditions (C1)-(C3) hold. For matrices

M1 = (m
(1)
ij ) ∈ Rn×p and M2 = (m

(2)
ij ) ∈ Rn×p, define M1 4 M2 as m

(1)
ij ≤ m

(2)
ij for

1 ≤ i ≤ n and 1 ≤ j ≤ p. In addition, define |M |e = (|mij|) ∈ Rn×p for any arbitrary

matrix M = (mij) ∈ Rn×p. Then there exists J > 0, such that

(a) for any integer n > 0, we have

|Gn(G>)n|e 4 nJc2nβ MM>, (A.1)

|GnΣY |e 4 αnJcnβMM>, (A.2)

where M = C1π> +
∑J

j=0W
j, C > 1 is a constant, π is defined in (C3.1), and α is a

finite constant.

(b) For positive integers k1 ≤ 1, k2 ≤ 1, and j ≥ 0, define gj,k1,k2(G,W (k)) =

|(W (k))k1{Gj(G>)j}k2

(W (k)>)k1|e ∈ RN×N . In addition, define (W (k))0 = Ik = (INk
,0) ∈ RNk×N . For

integers 0 ≤ k1, k2,m1,m2 ≤ 1, as N →∞ we have

N−1
∞∑
j=0

{
µ>gj,k1,k2(G,W (k))µ

}1/2

→ 0, (A.3)

N−1
∞∑

i,j=0

[
tr
{
gi,k1,k2(G,W (k))gj,m1,m2(G,W (k))

}]1/2
→ 0, (A.4)
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where |µ|e 4 cµ1 and cµ is a finite constant.

(c) For integers 0 ≤ k1, k2 ≤ 1, define fk1,k2(W
(k), Q) = |(W (k))k1Qk2(W (k)>)k1 |e ∈

RN×N , where Q is given in (C3). Then for integers 0 ≤ k1, k2,m1,m2 ≤ 1, as N →∞

we have

N−2µ>fk1,k2(W
(k), Q)µ→ 0, (A.5)

N−2tr
{
fk1,k2(W

(k), Q)fm1,m2(W
(k), Q)

}
→ 0, (A.6)

N−1
∞∑
j=0

[
tr
{
fk1,k2(W

(k), Q)gj,m1,m2(G,W (k))
}]1/2

→ 0, (A.7)

where |µ|e 4 cµ1 and cµ is a finite constant.

Proof: The proof is similar in spirit to Zhu et al. (2017). Therefore, we give the

guideline of the proof and skip some similar details. Without loss of generality, we let

cβ = |β11| + |β21| (i.e., k = 1). Consequently, we have |G|e 4 |β11|W + |β21|I. Let

G = |β11|W + |β21|I. Follow similar technique in part (a) in Lemma 2 of Zhu et al.

(2017), it can be verified

|Gn|e 4 nJcnβM, (A.8)

where M = C1π> +
∑J

j=0W
j is defined in (a) of Lemma 2. Subsequently, the result

(A.1) can be readily obtained. Next, recall that ΣY = (I − G)−1ΣZ(I − G>)−1 +∑∞
j=0 GjΣe(G>)j = (

∑∞
j=0 Gj)ΣZ(

∑∞
j=0(G>)j)+

∑∞
j=0 GjΣe(G>)j. Let σ2

z = maxk{γ>k Σz

γk} and σ2
e = maxk{σ2

k}. Then we have |GnΣY |e 4 σ2
z(
∑∞

j=0 |Gn+j|e)(
∑∞

j=0 |(G>)j|e) +

σ2
e

∑∞
j=0 |Gn+j|e|(G>)j|e. Subsequently, (A.2) can by obtained by applying (A.8). Next,

we give the proof of (b) in the following. The conclusion (c) can be proved by similar

techniques, which is omitted here to save space.

Let k1 = k2 = 1. Then we have gj,1,1(G,W (k)) = |W (k)GjGjW (k)>|. Recall that
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W (k) = (wij : i ∈ Mk, 1 ≤ j ≤ N) ∈ RNk×N . Since we have |µ|e 4 cµ1, then it suffices

to show
∑∞

j=0N
−1
k

{
1>gj,1,1(G,W (k))1

}1/2 → 0. We first prove (A.3). By (A.8) we have

|W (k)Gj|e 4 jK(|β1|+ |β2|)jW (k)M . As a result, we have

|W (k)Gj(G>)jW (k)>|e 4 j2K(|β1|+ |β2|)2jM, (A.9)

whereM is defined asM = W (k)MM>W (k)>. As a result, we have
∑∞

j=0N
−1
k

{
1>W (k)

Gj(G>)jW (k)>1
}1/2 ≤ N−1k α1(1

>M1)1/2, where α1 =
∑∞

j=0 j
Kcjβ < ∞. Then it leads

to showN−2k 1>M1→ 0. It can be shown 1>M1 = N2
kC
∑

j π
2
j+
∑K

j=1 1
>W (k)W j(W>)j

W (k)>1+2NkC
∑

j π
>(W>)jW (k)>1+

∑
i 6=j 1

>W (k)W i(W>)jW (k)>1. For the last two

terms of 1>M1, by Cauchy inequality, we have

Nk

∑
j

π>(W>)jW (k)>1 ≤ Nk

(∑
j

π2
j

)1/2{
1>W (k)W j(W>)jW (k)>1

}1/2

,

and
∑

i 6=j 1
>W (k)W i(W>)jW (k)>1 ≤

∑
i 6=j
{
1>W (k)W i(W>)iW (k)>1

}1/2{
1>W (k)W j

(W>)jW (k)>1
}1/2

. As a result, it leads to show

N∑
j=1

π2
j → 0 and N−2k 1>W (k)W j(W>)jW (k)>1→ 0 (A.10)

for 1 ≤ j ≤ K + 1. As the first convergence in (A.10) is implied by (C2.1), we

next prove N−2k 1>W (k)W j(W>)jW (k)>1 → 0 (1 ≤ j ≤ K). Recall that W ∗ =

W+W>. Therefore, we have N−2k 1>W (k)W j(W>)jW (k)>1 ≤ N−21>W (k)W ∗2jW (k)>1.

Then it suffices to show N−21>W (k)W ∗2jW (k)>1 → 0. By eigenvalue-eigenvector de-

composition of W ∗ we have W ∗ =
∑

k λk(W
∗)uku

>
k , where λk(W

∗) and uk ∈ RN

are the kth eigenvalue and eigenvector of W ∗ respectively. As a result, we have

N−2k 1>W (k)W ∗2jW (k)>1 ≤ N−2k λmax(W
∗)2j(1>W (k)W (k)>1) (1 ≤ j ≤ K). Further
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we have 1>W (k)W (k)>1 ≤ Nkλmax(W
(k)W (k)>). Note that W (k)W (k)> is a sub-matrix

of WW> with row and column index in Mk. Therefore, by Cauchy’s interlacing The-

orem, we have λmax(W
(k)

W (k)>) ≤ λmax(WW>) = O(N δ′) for δ′ < δ. Since we have minkNk = N δ for δ > 0,

then we have N−1k λmax(W
(k)W (k)>)→ 0 as N →∞. As a consequence, the second ter-

m in (A.10) holds. Similarly, it can be proved that (A.10) holds for all 0 ≤ k1, k2 ≤ 1.

As a result, we have (A.3) holds.

We next prove (A.4) with k1 = k2 = m1 = m2 = 1, and gi,1,1(G,W (k))gj,1,1(G,W (k)) =

|W (k)Gi(G>)iW (k)>W (k)Gj(G>)jW (k)>|e. Then it can be similarly proved for other cases

(i.e., 0 ≤ k1, k2,m1,m2 ≤ 1). Note that by (A.9), we have

[
tr
{
W (k)Gi(G>)iW (k)>W (k)Gj(G>)jW (k)>

}]1/2
≤ iKjK(|β1|+ |β2|)i+jtr

{
M2

}1/2
.

It then can be derived that N−1k
∑∞

i,j=0[tr{W (k)Gi(G>)iW (k)>W (k)Gj(G>)jW (k)>}]1/2 ≤

α2N−1k tr
{
M2

}1/2
. In order to obtain (A.4), it suffices to show that

N−2k tr{M2} → 0. (A.11)

Equivalently, by Cauchy inequality, it suffices to prove (
∑
π2
j )

2 → 0, andN−2k tr{W (k)W j

W j>W (k)>W (k)W jW j>W (k)>} → 0 holds for 1 ≤ j ≤ K. It can be easily verified the

first term holds by (C2.1). For the second one, we haveN−2k tr{W (k)W jW j>W (k)>W (k)W j

W j>W (k)>} ≤ N−2k tr{W (k)(W ∗)4jW (k)>} ≤ N−2k λmax(W
∗)4jtr(W (k)W (k)>) ≤ N−2k Nk

λmax(W
∗)4Kλmax(WW>). Similarly, due to that λmax(W

∗) = O(logN) and λmax(WW>)

= O(N δ′) in (C2.2), we have N−1k λmax(W
∗)4Kλmax(WW>) → 0 as N → ∞. Conse-

quently, we have (A.11) and then (A.4) holds. This completes the proof of (b).

Lemma 3. Let {Xit : 1 ≤ t ≤ T} and {Yit : 1 ≤ t ≤ T} be random sub-Gaussian time
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series with mean 0, var(Xit) = σi,xx, var(Yit) = σi,yy, and cov(Xit, Yit) = σi,xy. Let

σxi,t1t2 = cov(Xit1 , Xit2) and Σxi = (σxi,t1t2 : 1 ≤ t1, t2 ≤ T ) ∈ RT×T . Similarly, define

σyi,t1t2 and Σyi ∈ RT×T . Then we have

P
(∣∣∣T−1 T∑

t=1

XitYit− σi,xy
∣∣∣ > ν

)
≤ c1

{
exp(−c2σ−2xi T 2ν2) + exp(−c2σ−2yi T 2ν2)

}
(A.12)

for |ν| ≤ δ, where σ2
xi = tr(Σ2

xi), σ2
yi = tr(Σ2

yi), c1, c2, and δ are finite constants.

Proof: Let Xi = (Xi1, · · · , XiT )> ∈ RT and Yi = (Yi1, · · · , YiT )> ∈ RT . In addition,

let Zi = Zi + Yi. Therefore, we have Z>i Zi = 2−1(Z>i Zi − X>i Xi − Y >i Yi). It can be

derived that

P{|T−1(X>i Yi)− σi,xy| ≥ ν} ≤ P{|T−1(Z>i Zi)− (σi,xx + σi,yy + 2σi,xy)| ≥ ν1}

+ P{|T−1(X>i Xi)− σi,xx| ≥ ν1}+ P{|T−1(Y >i Yi)− σi,yy| ≥ ν1}, (A.13)

where ν1 = 2ν/3. Next, we derive the upper bound for the right side of (A.13). Note

that X>i Xi, Y
>
i Yi, and Z>i Zi all take quadratic form. Therefore the proofs are similar.

For the sake of simplicity, we take Y >i Yi for an example and derive the upper bound for

P{|n−1(Y >i Yi)− σi,yy| ≥ ν1}. Similar results can be obtained for the other two terms.

First we have Y >i Yi = Y >i Σ
−1/2
yi ΣyiΣ

−1/2
yi Yi = Ỹ >i ΣyiỸi, where Ỹi = Σ

−1/2
yi Yi fol-

lows sub-Gaussian distribution. Let λ1 ≥ λ2 ≥ · · · ≥ λT be the eigenvalues of Σyi.

Since Σyi is a non-negative definite matrix, The eigenvalue decomposition can be ap-

plied to obtain Σyi = U>ΛU , where U = (U1, · · · , UT )> ∈ RT×T is an orthogonal

matrix and Λ = diag{λ1, · · · , λT}. As a consequence, we have Y >t Yt =
∑

t λtζ
2
t ,

where ζt = U>t Ỹt and ζts are independent and identically distributed as standard

sub-Gaussian. It can be verified ζ2t − 1 satisfies sub-exponential distribution and

T−1(
∑

t λt) = σi,yy. In addition, the sub-exponential distribution satisfies condition

33



(P) on page 45 of Saulis and Statuleviveccius (2012). There exists constants c1,

c2, and δ such that P{|T−1(Y >i Yi) − σi,yy| ≥ ν1} = P{
∑

t λt(ζ
2
t − 1)| ≥ Tν1} ≤

c1 exp{−c2(
∑

t λ
2
t )
−1T 2ν2} = c1 exp{−c2σ−1yi T 2ν2} for |ν| < δ by the Theorem 3.3 of

Saulis and Statuleviveccius (2012). Consequently, (A.12) can be obtained by appro-

priately chosen c1, c2, and δ.

Lemma 4. Assume Yit follows the GNAR model (2.3) and |cβ| < 1. Then there exists

finite constants c1, c2, and δ, for ν < δ we have

P
{∣∣T−1 T∑

t=1

Y 2
it − µ2

i − e>i ΣY ei
∣∣ > ν

}
≤ δT , (A.14)

P
{∣∣T−1 T∑

t=1

Yit(w
>
i Yt)− µY i(w>i µY )− w>i ΣY ei

∣∣ > ν
}
≤ δT (A.15)

P
{∣∣T−1 T∑

t=1

Yi(t−1)εit
∣∣ > ν

}
≤ δT , P

{∣∣T−1 T∑
t=1

(w>i Yt−1)εit
∣∣ > ν

}
≤ δT , (A.16)

P
{∣∣T−1 T∑

t=1

Yi(t−1) − µi
∣∣ > ν

}
≤ δT , P

{∣∣T−1 T∑
t=1

w>i Yt − w>i µY
∣∣ > ν

}
≤ δT , (A.17)

where δT = c1 exp(−c2Tν2), ei ∈ RN is an N-dimensional vector with all elements

being 0 but the ith element being 1, and µi = e>i µY .

Proof: For the similarity of proof procedure, we only prove (A.14) in the following.

Without loss of generality, let µY = 0. Recall that the group information is denoted

as Z = {zik : 1 ≤ i ≤ N, 1 ≤ k ≤ K}. Define P ∗(·) = P (·|Z), E∗(·) = E(·|Z), and

cov∗(·) = cov(·|Z). Write Yi = (Yi1, · · · , YiT )> ∈ RT . Given Z, Yi is a sub-Gaussian

random vector with cov(Yi) = Σi = (σi,t1t2) ∈ RT×T , where σi,t1t2 = e>i Gt1−t2ΣY ei for

t1 ≥ t2, σi,t1t2 = e>i ΣY (G>)t2−t1ei, and G is pre-defined in (2.5) as G = B1W + B2.

It can be derived var∗(Y>i Yi) ≤ ctr(Σ2
i ), where c is a positive constant and tr(Σ2

i ) =

T (e>i ΣY ei)
2 + 2

∑T−1
t=1 (T − t)(e>i GtΣY ei)

2. It can be derived |ΣY |e 4 αMM> and

|GtΣY |e 4 α1t
JctβMM> by (A.2) of Lemma 2, where cβ, J and M are defined in Lemma
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2, α and α1 are finite constants. In addition, it can be verified
∑T−1

t=1 (T−t)t2Jc2tβ ≤ α2T ,

where α2 is a finite constant. Therefore we have tr(Σ2
i ) ≤ T (α+2α1α2){(e>i MM>ei)

2}.

Since we have e>i MM>ei ≤ (J + 1)e>i M1 ≤ (J + 1)2 = O(1), it can be concluded that

tr(Σ2
i ) ≤ Tα3, where α3 = (α + 2α1α2)(J + 1)2. By Lemma 3, the (A.14) can be

obtained.

Appendix B. Proof of Theorem 1

Let λi(M) be the ith eigenvalue of M ∈ RN×N . We first verify that the solution

(2.6) is strictly stationary. By Banerjee et al. (2014), we have maxi |λi(W )| ≤ 1. Hence

we have

max
1≤i≤N

|λi(G)| ≤
(

max
1≤k≤K

|β1k|
)(

max
1≤i≤N

|λi(W )|
)

+ max
1≤k≤K

|β2k| < 1. (A.18)

Consequently, we have limm→∞
∑m

j=0 GjEt−j exists and {Yt} given by (2.6) is a strictly

stationary process. In addition, one could directly verify that {Yt} satisfies the GNAR

model (2.3).

Next, we verify that the strictly stationary solution (2.6) is unique. Assume {Ỹt}

is another strictly stationary solution to the GNAR model (2.3) with E‖Ỹt‖ < ∞.

Then we have Ỹt =
∑m−1

j=1 Gj(B0 + Et−j) + GmỸt−m for any positive integer m. Let

ρ = maxk(|β1k|+ |β2k|). Then one could verify E‖Yt− Ỹt‖ = E‖
∑∞

j=m Gj(B0 +Et−j)−

GmỸt−m‖ ≤ Cρm, where C is a finite constant unrelated to t and m. Note that m can

be chosen arbitrarily. As a result, we have that E‖Yt − Ỹt‖ = 0, i.e. Yt = Ỹt with

probability one. This completes the proof.

Appendix C. Proof of Theorem 2
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According to (3.2), θ̂k can be explicitly written as θ̂k = θk + Σ̂−1k ζ̂k, where Σ̂k =

(NkT )−1
∑T

t=1X
(k)>
t−1 X(k)

t−1 and ζ̂k = (NkT )−1
∑T

t=1X
(k)>
t−1 E

(k)
t . Without loss of generality,

we assume σ2
k = 1 for k = 1, · · · , K. Let Σk = limN→∞E(Σ̂k). As a result, it suffices

to show that

Σ̂k →p Σk, (A.19)√
NkT ζ̂k = Op(1), (A.20)

as min{N, T} → ∞. Subsequently, we prove (A.19) in Step 1 and (A.20) in Step 2.

Step 1. Proof of (A.19). Define Q = (I − G)−1ΣV(I − G>)−1. In this step, we

intend to show that Σ̂k =

1

NkT

T∑
t=1

X(k)>
t−1 X(k)

t−1 =



1 S12 S13 S14

S22 S23 S24

S33 S34

S44


→p



1 c1β c2β 0>

Σ1 Σ2 κ8γ
>Σz

Σ3 κ3γ
>Σz

Σz


= Σk,

where

S12 =
1

NkT

T∑
t=1

∑
i∈Mk

w>i Yt−1, S13 =
1

NkT

T∑
t=1

∑
i∈Mk

Yi(t−1), S14 =
1

Nk

∑
i∈Mk

V >i ,

S22 =
1

NkT

T∑
t=1

∑
i∈Mk

(w>i Yt−1)
2, S23 =

1

NkT

T∑
t=1

∑
i∈Mk

w>i Yt−1Yi(t−1),

S24 =
1

NkT

T∑
t=1

∑
i∈Mk

w>i Yt−1V
>
i , S33 =

1

NkT

T∑
t=1

∑
i∈Mk

Y 2
i(t−1),
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S34 = (NkT )−1
∑T

t=1

∑
i∈Mk

Yi(t−1)V
>
i , S44 = N−1k

∑
i∈Mk

ViV
>
i . By (2.6), we have

Yt = (I − G)−1b0 + (I − G)−1bv + Ỹt, (A.21)

where b0 =
∑

kDkB0k, bv =
∑

kDkVγk, and Ỹt =
∑∞

j=0 GjEt−j. By the law of large

numbers, one could directly obtain that S44 →p Σv and S14 →p 0
>. Subsequently, we

only show the convergence of S12 and S23 in Σ̂k as follows.

Convergence of S12. It can be derived that

S12 =
1

NkT

T∑
t=1

1>W (k)Yt−1 =
1>W (k)µY

Nk

+ S12a + S12b,

where S12a = N−1k 1>W (k)(I − G)−1bv and S12b = (NkT )−1
∑T

t=1 1
>W (k)Ỹt−1. Then by

(A.5) and (A.3) in Lemma 2, we haveN−2k 1>W (k)QW (k)>1→ 0 andN−1k
∑∞

j=0

{
1>W (k)

Gj(G>)jW (k)>1
}1/2 → 0, as N → ∞. As a result, it is implied by Lemma 1 (a) and

(c) that S12a →p 0 and S12b →p 0.

Convergence of S23. Note that

S23 =
1

NkT

T∑
t=1

∑
i∈Mk

w>i Yt−1Yi(t−1) =
1

NkT

T∑
t=1

Y(k)>
t−1 W

(k)Yt−1

=
µ
(k)>
Y W (k)µY

Nk

+ S23a + S23b + S23c + S23d + S23e,

where S23a = N−1k b̃>v I>k W (k)b̃v, S23b = N−1k T−1
∑T

t=1 Ỹ
(k)>
t−1 W

(k)Ỹt−1 and S23c = N−1k T−1∑T
t=1(̃b

>
v I>k W (k)Ỹt−1+Ỹ>t−1I>k W (k)b̃v), S23d = N−1k (̃b>v I>k µ̃Y +µ>Y I>k b̃v), S23e = N−1k T−1∑T

t=1(Y
(k)>
t−1 µ̃Y + µ>Y I>k W (k)Yt−1), where µ̃Y = W (k)µY and b̃v = (I − G)−1bv.

We next look at the terms one by one. First we have N−2k tr(IkQI>k W (k)QW (k)>)→

0 by (A.6) in Lemma 2 (c). Therefore, by (b) in Lemma 1, we have S23a →p s23a, where
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s23a = limNk→∞E(S23a). Next, for S23b we haveN−1k
∑∞

i,j=0 tr{(IkGi(G>)iI>k W (k)Gj(G>)j

W (k)>} → 0 by (A.4) in Lemma 2 (b). Therefore, by (d) in Lemma 1, we have

S23b →p s23b, where s23b = limNk→∞E(S23b). Next, let S23c = S(1)
23c + S(2)

23c, where S(1)
23c =

N−1k T−1
∑T

t=1 b̃
>
z I>k W (k)Ỹt−1 and S(2)

23c = N−1k T−1
∑T

t=1 Ỹ>t−1I>k W (k)b̃v. Note that we

haveN−1k
∑∞

j=0 tr{W (k)Gj(G>)jW (k)>IkQI>k } → 0 andN−1k
∑∞

j=0 tr{IkGj(G>)jI>k W (k)

QW (k)>} → 0 by (A.7) in Lemma 2 (c). Therefore, S23c →p s23c by (e) in Lemma 1,

where s23c = limNk→∞E(S23c). Next, by similar proof to the convergence of S13, we

have that S23d →p 0 and S23e →p 0. As a consequence, we have S23 →p Σ2.

Step 2. Proof of (A.20). It can be verified that
√
NkTE(ζ̂k) = 0. In addition, we

have var{
√
NkT ζ̂k} = E(Σ̂k) → Σk as Nk → ∞. Consequently, we have

√
NkT ζ̂k =

Op(1).

Appendix D. Proof of Theorem 3

Let Σ̂
(i)
x = T−1

∑T
t=1X i(t−1)X

>
i(t−1) = (σ̂x,ij) ∈ R3×3, and Σ̂

(i)
xe = T−1(

∑T
t=1X i(t−1)δi

εit). We then have

b̂i − bi = (Σ̂(i)
x )−1Σ(i)

xe .

Let Σ̂
(i)
x = (σ̂x,j1j2 : 1 ≤ l1, l2 ≤ 3) ∈ R3×3, where the index i of σ̂x,l1l2 is omitted. Specif-

ically, σ̂x,11 = 1, σ̂x,12 = T−1
∑

tw
>
i Yt−1, σ̂x,13 = T−1

∑
t e
>
i Yt−1, σ̂x,22 = T−1

∑
t Y

2
i(t−1),

σ̂x,23 = T−1
∑

t Yi(t−1)(w
>
i Yt−1), σ̂x,33 = T−1

∑
t(w
>
i Yt−1)

2. Mathematically, it can be

computed (Σ̂
(i)
x )−1 = |Σ̂(i)

x |−1Σ̂∗(i)x , where |Σ̂(i)
x | is the determinant of Σ̂

(i)
x , and Σ̂

∗(i)
x

is the adjugate matrix of Σ̂
(i)
x , and Σ

∗(i)
x = (σ̂∗x,l1l2), where σ̂∗x,11 = σ̂x,22σ̂x,33 − σ̂2

x,23,

σ̂∗x,12 = σ̂x,13σ̂x,32 − σ̂x,12σ̂x,33 σ̂
∗
x,13 = σ̂x,21σ̂x,32 − σ̂x,22σ̂x,31, σ̂

∗
x,22 = σ̂x,11σ̂x,33 − σ̂2

x,13,

σ̂∗x,23 = σ̂x,13σ̂x,32 − σ̂x,12σ̂x,33, and σ̂∗x,33 = σ̂x,11σ̂x,22 − σ̂2
x,12. It can be derived |Σ̂(i)

x | =

σ̂x,11(σ̂x,22σ̂x,33−σ̂2
x,23)−σ̂x,12(σ̂x,12σ̂33−σ̂13σ̂23)+σ̂13(σ̂12σ̂23−σ̂22σ̂13). By the maximum
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inequality, we have

P (sup
i
‖b̂i − bi‖ > ν) ≤

N∑
i=1

P (‖b̂i − bi‖ > ν). (A.22)

In addition, we have

P (‖b̂i − bi‖ > ν) ≤ P
(∣∣|Σ̂(i)

x | − σ(i)
x

∣∣ ≥ δi
)

+ P
(∣∣Σ̂∗(i)x Σ̂(i)

xe

∣∣ ≥ δiν
)
, (A.23)

where σ
(i)
x = σx,11(σx,22σx,33 − σ2

x,23)− σx,12(σx,12σ33 − σ13σ23) + σ13(σ12σ23 − σ22σ13) =

(e>i ΣY ei)(w
>
i ΣYwi)−(e>i ΣYwi)

2, δi = σ
(i)
x /2. By lemma 4, for each component of |Σ̂(i)

x |

we have P (|σ̂x,l1l2 − σx,l1l2 | > ν0) ≤ c1 exp(−c2Tν20), where σx,l1l2 = E(σ̂x,l1l2) and ν0 is

a finite positive constant. Moreover, by the conditions of Theorem 3, we have σ
(i)
x ≥ τ

with probability tending to 1. Consequently, it is not difficult to obtain the result

P (||Σ̂(i)
x |−σ(i)

x | ≥ δi) ≤ c∗1 exp(−c∗2Tτ 2), where c∗1, c
∗
2 are finite constants. Subsequently,

we have P (|Σ̂∗(i)x Σ̂
(i)
xe | ≥ δiν) ≤ P (|Σ̂∗(i)x Σ̂

(i)
xe | ≥ τν/2). By similar technique, one could

verify that each element of Σ̂
∗(i)
x and Σ̂

(i)
xe converge with probability and the tail proba-

bility can be controlled, where the basic results are given in Lemma 4. Consequently,

there exists constants c∗3 and c∗4 such that P (|Σ̂∗(i)x Σ̂
(i)
xe | ≥ τν/2) ≤ c∗3 exp(−c∗4Tτ 2ν2).

Consequently, we have P (‖b̂i − bi‖ > ν) ≤ c∗1 exp(−c∗2Tτ 2) + c∗3 exp(−c∗4Tτ 2ν2) by

(A.23). By the condition N = o(exp(T )), the right side of (A.22) goes to 0 as N →∞.

This completes the proof.
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Table 1: Parameter Setup for Examples 1–3 in the Simulation Study.

α β0 β1 β2 γ

Example 1 & 2

Group 1 0.2 0.0 0.1 0.3 (0.5, 0.7, 1.0, 1.5,−1.0)>

Group 2 0.3 0.2 -0.3 0.2 (0.1, 0.9, 0.4,−0.2,−1.5)>

Group 3 0.5 0.5 0.2 0.7 (0.2,−0.2, 1.4,−0.8, 0.5)>

Example 3

Group 1 0.2 5.0 0.2 0.1 (0.5, 0.7, 1.0, 1.5,−1.0)>

Group 2 0.3 -5.0 -0.4 0.2 (0.1, 0.9, 0.4,−0.2,−1.5)>

Group 3 0.5 0.0 0.2 0.4 (0.2,−1.0, 2.0, 3.0,−2.0)>
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Table 2: Simulation Results with 1000 Replications for the stochastic block model. The
RMSE (×102) are reported for the EM and TS estimation respectively. The network
density (ND) and the misclassification rate (MCR) is also reported in percent (%).

N Est. α β0 β1 β2 γ ND MCR

Scenario 1. T = N/2

100 EM 3.63 30.80 10.96 14.56 49.64 2.2 11.1

TS 8.92 110.00 28.13 38.91 175.10 2.2 42.4

200 EM 2.10 14.86 6.42 11.09 26.54 1.1 3.8

TS 7.56 46.74 22.19 34.66 75.44 1.1 31.3

500 EM 0.82 7.07 3.06 5.71 11.04 0.4 0.9

TS 6.72 19.00 12.56 22.58 48.59 0.4 14.7

Scenario 2. T = 2N

100 EM 4.08 41.67 12.24 17.60 56.03 2.2 13.3

TS 6.65 37.43 13.86 21.51 60.08 2.2 15.0

200 EM 2.49 17.37 6.90 12.48 30.03 1.1 4.7

TS 4.49 12.33 7.20 11.57 28.34 1.1 4.8

500 EM 1.04 8.82 3.19 6.76 13.95 0.4 1.1

TS 1.42 3.84 1.42 2.31 7.16 0.4 0.3
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Table 3: Simulation Results with 1000 Replications for the power-law model. The
RMSE (×102) are reported for the EM and TS estimation respectively. The network
density (ND) and the misclassification rate (MCR) is also reported in percent (%).

N Est. α β0 β1 β2 γ ND MCR

Scenario 1. T = N/2

100 EM 3.21 28.42 9.69 12.75 43.40 2.3 9.4

TS 14.22 72.19 39.86 35.14 116.84 2.3 32.0

200 EM 1.74 13.15 5.67 9.86 23.44 1.2 3.5

TS 12.08 34.17 27.13 27.83 64.49 1.2 18.0

500 EM 0.78 5.94 2.67 5.55 11.00 0.5 0.8

TS 7.15 15.46 12.04 13.17 32.13 0.5 4.5

Scenario 2. T = 2N

100 EM 3.79 36.09 11.19 16.27 50.06 2.3 12.0

TS 6.15 14.07 10.01 13.95 30.63 2.3 4.4

200 EM 2.33 17.64 6.65 11.67 27.50 1.2 4.7

TS 2.99 6.20 4.00 6.14 14.08 1.2 0.9

500 EM 0.74 5.70 2.42 4.92 10.37 0.5 0.7

TS 0.02 0.35 0.12 0.39 0.64 0.5 0.0
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Table 5: The detailed GNAR analysis results for the Sina Weibo dataset.

Regression coefficient Group 1 Group 2 Group 3

Group Ratio (α) 0.447 0.361 0.192

Baseline Effect (β0) 0.857 1.681 0.236

Network Effect (β1) 0.031 0.026 0.002

Momentum Effect (β2) 0.765 0.396 0.958

Gender (γ1) 0.077 0.155 0.009

Number of Labels (γ2) 0.006 0.018 0.002

Table 6: The prediction RMSE for PM2.5 dataset using GNAR model (with EM and
TS estimation respectively), NAR model, AR model.

GNAR (EM) GNAR (TS) NAR AR

Spring 0.375 0.387 0.388 0.739

Summer 0.328 0.328 0.330 0.941

Autumn 0.439 0.439 0.441 1.122

Winter 0.546 0.565 0.561 0.955
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Table 7: Estimation results of the PM2.5 dataset by EM algorithm. Two groups are
set for spring, summer, and autumn. While in winter, the number of groups is chosen
to be K = 3.

Spring Summer Autumn Winter

Group 1 2 1 2 1 2 1 2 3

Group Ratio (α) 0.61 0.39 0.67 0.33 0.53 0.47 0.30 0.12 0.58

Baseline Effect (β0) 1.26 0.77 0.46 0.55 0.25 0.41 1.80 1.39 0.20

Network Effect (β1) 0.14 0.11 0.20 -0.04 0.32 0.11 0.16 0.05 0.20

Momentum Effect (β2) 0.55 0.65 0.67 0.87 0.62 0.76 0.43 0.57 0.74
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