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This is a supplementary material that contains the verification of (2.6)
and (2.7), proofs of Theorem 1, Theorem 4, Theorem 5, two useful lemmas,
and Proposition 2. Lastly, the numerical verification of conditions (C2)–(C3)
are also included.

1. Verification of (2.6) and (2.7). First, by Taylor’s expansion, (I−
β1W − β2I)−1 = (1 − β2)−1{I + (1 − β2)−1β1W + (1 − β2)−2β21W 2 + · · · }.
As a result the stationary mean in (2.4) can be written as

µ =
1

1− β2
{
I +

β1
1− β2

W +
β21

(1− β2)2
W 2 + · · ·

}
B0

≈ 1

1− β2
(
I +

β1
1− β2

W
)
B0,

where the last equation is approximated by the first order Taylor’s expansion
and maxi |λi(W )| ≤ 1. Next, one can verify that Yt = B0 + GYt−1 + Et =
µ+Et+GEt−1 +G2Et−2 + · · ·+GkEt−k + · · · = µ+

∑∞
k=0G

kEt−k. Recall µ =
B0 +GB0 + · · · = (I −G)−1B0. Then, we have Γ(0) = cov(

∑∞
k=0G

kEt−k) =

∞∑
k=0

σ2Gk(Gk)> =

∞∑
k=0

σ2(I − β1W − β2I)k(I − β1W> − β2I)k

≈ 1

1− β22
I +

β1β2
(1− β22)2

(W +W>),

where the last equation is approximated by the first order Taylor’s expansion
and maxi |λi(W )| ≤ 1. This completes the proof.

2. Proof of Theorem 1. Denote λi(M) as the ith eigenvalue of any
arbitrary matrix M ∈ RN×N . We first verify that the solution given by (2.3)
satisfies strict stationarity. To this end, note that maxi |λi(W )| ≤ 1 [1], and

(2.1) ρ = max
1≤i≤N

|λi(G)| ≤ |β1| max
1≤i≤N

|λi(W )|+ |β2| < 1.

1

http://www.imstat.org/aos/


2

It holds that limm→∞
∑m

j=0G
jEt−j exists, and then {Yt} defined in (2.3) is

a strictly stationary process. It is straightforward to verify that {Yt} sat-
isfies the NAR model (2.2). Next, we verify the uniqueness of the strictly
stationarity solution (2.3). Assume that {Ỹt} is another strictly stationary
solution to the NAR model with E‖Ỹt‖ < ∞. Then Ỹt =

∑m−1
j=1 Gj(B0 +

Et−j) +GmỸt−m for any positive integer m. Hence by (2.1), E‖Yt − Ỹt‖ =

E‖
∑∞

j=mG
j(B0 + Et−j) − GmỸt−m‖ ≤ Cρm, where C is a constant inde-

pendent of t and m. Note that m is chosen arbitrarily. Hence, we have that
E‖Yt − Ỹt‖ = 0, i.e. Yt = Ỹt with probability one. This completes the
theorem proof.

3. Proof of Theorem 4. Note that E|B∗0 + E∗t−j |e 4 (|β0|+E|Z>i γ|+
E|εit|)1Np. Let ρ =

∑p
m=1 ρm, where ρm = |αm|+ |βm|. We then can verify

that |G∗|e1Np = (ρ1>N ,1
>
N(p−1))

>, and |G∗2|e1Np = {(ρρ1+
∑p

m=2 ρm)1>N , ρ1
>
N ,

1>N(p−2)}
> 4 (ρ1>2N ,1

>
N(p−2))

>. Similarly, |G∗n|e1Np 4 ρ1Np for n = 3, ..., p.
As a result, the rest follows the proofs of Theorems 1 and 2 by noting that
ρ < 1 and (I −G∗)−1B∗0 = (I − G̃)−1B0.

4. Proof of Theorem 5. From Theorem 4, we have Yt = IY∗t =
(I−G̃)−1B0+

∑∞
j=0 IG

∗jE∗t−j = (I−G̃)−1B0+
∑∞

j=0 IG
∗jI>Et−j , and hence

(4.1) Yt = c∗β1p + (I − G̃)−1Zγ +
∞∑
j=0

IG∗jI>Et−j ,

which is in the same form as the decomposition of (A.3) for the NAR model.
We then establish similar results as in Lemma 2, therefore Theorem 5 can
be proved subsequently as Theorem 3. Note that

|G∗|e =

(
|α1|W + |β1|I · · · |αp|W + |βp|I

IN(p−1) ON(p−1),N

)
.

Let I = 1>p ⊗ IN , and then I|G∗|neI
>

has a polynomial form of

(4.2) I|G∗|neI
>

=
n∑

m=1

a(n)m Wn,

where W 0 = I and a
(n)
m s (1 ≤ k ≤ p) are nonnegative coefficients.

We then derive an upper bound for
∑n

m=1 a
(n)
m , thus the upper bound for

|IG∗nI>|e and |IG∗nI>I(G∗>)nI>|e can be established. To this end, define
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a p× p matrix function

G =

(
|α1|+ |β1| · · · |αp|+ |βp|

Ip−1 0

)
,

and it can be verified that 1>p G
n1p =

∑n
m=1 a

(n)
m , where the coefficients a

(n)
m s

are the same as in (4.2). Moreover, we have
∑n

m=1 a
(n)
m = 1>p G

n1p ≤ Cρn/p,
where C is a constant. Note that I 4 I. Together with (5.7), we can establish
the upper bound for |IG∗nI>I(G∗>)nI>|e, which is similar to (B.1) in the
proof of Lemma 2.

To extend (b) and (c) in Lemma 2, note that for integers k1, k2, and
n ≥ 0, define

g∗j,k1,k2(G∗,W ) = |W k1{IG∗jI>I(G∗>)jI>}k2(W>)k1 |e ∈ RN×N ,

and
f∗k1,k2(W, Q̃) = |W k1Q̃k2(W>)k1 |e ∈ RN×N .

It is noteworthy that g∗j,k1,k2(G∗,W ) and f∗k1,k2(W, Q̃) are gj,k1,k2(G,W ) and

fk1,k2(W,Q) by replacing Gj and Q by IG∗jI> and Q̃, respectively. Similarly
we can establish the same results as (b) and (c) in Lemma 2, and the rest
follows the proofs of Theorem 3.

5. Two Useful Lemmas.

Lemma 1. Let X = (X1, · · · , Xn)> ∈ Rn, where Xis are independent
and identically distributed random variables with mean zero, variance σ2X
and finite fourth order moment. Let Ỹt =

∑∞
j=0G

jUEt−j, where G ∈ Rn×n,

U ∈ Rn×N , and {Et} satisfy Condition (C1) and are independent of {Xi}.
Then for a matrix A = (aij) ∈ Rn×n and a vector B = (b1, · · · , bn)> ∈ Rn,
it holds that

(a) n−1B>X →p 0 if n−2B>B → 0 as n→∞.
(b) n−1X>AX →p σ

2
X limn→∞ n

−1tr(A) if the limit exists, and n−2tr(A
A>)→ 0 as n→∞.

(c) (nT )−1
∑T

t=1B
>Ỹt →p 0 if n−1

∑∞
j=0(B

>GjUU>(G>)jB)1/2 → 0 as
n→∞.

(d) (nT )−1
∑T

t=1 Ỹ>t AỸ>t →p σ
2 limn→∞ n

−1tr{AΓ(0)} if the limit exists,
and n−1

∑∞
i=0

∑∞
j=0[tr{U>(G>)iAGjUU>(G>)jA>GiU}]1/2 → 0 as n

→∞.
(e) (nT )−1

∑T
t=1X

>AỸ>t →p 0 if n−1
∑∞

j=0[tr{AGjUU>(G>)jA>}]1/2 →
0 as n→∞.
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Lemma 2. Assume the stationary condition |β1| + |β2| < 1. Further

assume Conditions (C1)-(C3) hold. For matrices M1 = (m
(1)
ij ) ∈ Rn×p and

M2 = (m
(2)
ij ) ∈ Rn×p, define M1 4 M2 as m

(1)
ij ≤ m

(2)
ij for 1 ≤ i ≤ n and

1 ≤ j ≤ p. In addition, define |M |e as |M |e = (|mij |) ∈ Rn×p for any
arbitrary matrix M = (mij) ∈ Rn×p. Then there exists K > 0, such that
(a) for any integer n > 0, we have

(5.1) |Gn(G>)n|e 4 nK(|β1|+ |β2|)2nMM>,

where M = C1π> +
∑K

j=0W
j, C > 1 is a constant, and π is defined in

(C2.1).
(b) For integers k1, k2, and j ≥ 0, define gj,k1,k2(G,W ) = |W k1{Gj(G>)j}k2
(W>)k1 |e ∈ RN×N . For integers 0 ≤ k1, k2,m1,m2 ≤ 1, as N →∞ we have

N−1
∞∑
j=0

{
1>gj,k1,k2(G,W )1

}1/2
→ 0,(5.2)

N−1
∞∑

i,j=0

[
tr
{
gi,k1,k2(G,W )gj,m1,m2(G,W )

}]1/2
→ 0.(5.3)

(c) For integers 0 ≤ k1, k2 ≤ 1, define fk1,k2(W,Q) = |W k1Qk2(W>)k1 |e ∈
RN×N , where Q is given in (C3). Then for integers 0 ≤ k1, k2,m1,m2 ≤ 1,
as N →∞ we have

N−21>fk1,k2(W,Q)1→ 0,(5.4)

N−2tr
{
fk1,k2(W,Q)fm1,m2(W,Q)

}
→ 0,(5.5)

N−1
∞∑
j=0

[
tr
{
fk1,k2(W,Q)gj,m1,m2(G,W )

}]1/2
→ 0,(5.6)

5.1. Proof of Lemma 1. We prove the five conclusions in Lemma 1 one
by one.
Proof of (a). Since E(n−1B>X)2 = n−2σ2XB

>B, conclusion (a) holds.
Proof of (b). note that X>AX =

∑n
i=1

∑n
j=1 aijXiXj . It can be verified
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that E(X>AX) = σ2X
∑n

j=1 ajj = σ2Xtr(A), and

E(X>AX)2 =
n∑
i=1

n∑
j=1

n∑
l=1

n∑
m=1

aijalmE(XiXjXlXm)

= σ4X
∑
i 6=j

aiiajj + σ4X
∑
i 6=j

a2ij + σ4X
∑
i 6=j

aijaji +

n∑
i=1

a2iiEX
4
i

≤ σ4X
(∑

i,j

aiiajj

)
+ 2σ4X

(∑
i,j

a2ij

)
+
∑
i

a2ii

{
EX4

i − 3σ4X

}
where the last inequality is due to

∑
i 6=j aijaji ≤ 0.5

∑
i 6=j(a

2
ij + a2ji) =∑

i 6=j a
2
ij . Since we have σ4X

∑
i,j aiiajj = {E(X>AX)}2,

∑
i,j a

2
ij = tr(AA>),

and
∑n

i=1 a
2
ii ≤ tr(AA>), then it can be derived that E(X>AX)2 ≤ {E(X>

AX)}2+C1tr(AA
>), where C1 = 2σ4X+|EX4

i −3σ4X |. Then n−2var(X>AX)
≤ C1n

−2tr(AA>)→ 0, and (b) holds.
Proof of (c). Denote Sa = (nT )−1

∑T
t=1B

>Ỹ>t = (nT )−1
∑∞

j=0

∑T
t=1B

>

GjUEt−j , then it holds that E(
∑T

t=1B
>GjUEt−j)2 = TB>GjUU>(G>)jB.

By applying Minkowski inequality, as n→∞ we have

‖Sa‖2 ≤
1

nT

∞∑
j=0

∥∥∥ T∑
t=1

B>GjUEt−j
∥∥∥
2

=
σ2

n
√
T

∞∑
j=0

{
B>GjUU>(G>)jB

}1/2 → 0,

which implies conclusion (c), where ‖X‖2 = (EX2)1/2 is the L2 norm.
Proof of (d). Let Sb = (nT )−1

∑T
t=1 Ỹ>t AỸt = (nT )−1

∑∞
i,j=0

∑T
t=1 ξt(i, j),

where ξt(i, j) = E>t−iU>(G>)iAGjUEt−j . Similar to the proof of conclusion
(b), we can show that E{ξt(j, j)} = σ2tr{U>(G>)jAGjU} and var{ξt(j, j)} ≤
C2tr{U>(G>)jAGjUU>(G>)jA>GjU}, where C2 = 2σ4 + |E(ε4it) − 3σ4|.
When i 6= j, it can be verified that Eξt(i, j) = 0 and E{ξt(i, j)2} =
σ4tr{U>(G>)iAGjUU>(G>)jA>GiU} ≤ C2tr{U>(G>)iAGjUU>(G>)jA>

GiU}. As a result, we have E{
∑T

t=1 ξt(i, j)−Eξt(i, j)}2 ≤ TC2tr{U>(G>)iA
GjUU>(G>)jA>GiU}. Then, by Minkowski inequality

‖Sb − ESb‖2 ≤
1

nT

∞∑
i=0

∞∑
j=0

∥∥∥ T∑
t=1

ξt(i, j)− Eξt(i, j)
∥∥∥
2

≤
√
C2

n
√
T

∞∑
i=0

∞∑
j=0

[
tr
{
U>(G>)iAGjUU>(G>)jA>GiU

}]1/2
→ 0

as n → ∞. In addition, we have ESb = n−1σ2
∑∞

j=0 tr{U>(G>)jAGjU} =

n−1tr{AΓ(0)}. Thus conclusion (d) holds.
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Proof of (e). It is straight forward that Sc = (nT )−1
∑T

t=1X
>AỸt =

(nT )−1
∑∞

j=0

∑T
t=1X

>AGjUEt−j . note that E(
∑T

t=1X
>AGjUEt−j)2 = Tσ2

E{X>AGjUU>(G>)jA>X} = Tσ2σ2Xtr{AGjUU>(G>)jA>}. Similar to
the proof of conclusion (c), by Minkowski inequality, ‖Sc‖2 ≤ (n

√
T )−1σσX∑∞

j=0[tr{AGjUU>(G>)jA>}]1/2 → 0 as n→∞. As a result, conclusion (e)
holds.

5.2. Proof of Lemma 2. Firstly, by [2], for the irreducible and aperiodic
Markov chains in (C2.1) with transition probability matrix W , we have
limn→∞W

n = 1π>, where π is the stationary distribution vector defined in
(C2.1). As a result, it can be concluded that there exists an integer K > 0,
for n > K we have

(5.7) Wn 4 C1π>,

where C > 1 is a constant. We then prove (a)-(c) in Lemma 2 one by one
as follows.
Proof of (a). Firstly, for any integer n > 0, we have Gn = (β1W +β2I)n =∑n

j=0C
j
nβ

j
1β

n−j
2 W j , where Cjn = n!/{j!(n−j)!}. Since W is an element-wise

non-negative matrix, |Gn|e 4
∑n

j=0C
j
n|β1|j |β2|n−jW j . Then for n > K we

have |Gn|e 4

n∑
j=0

Cjn|β1|j |β2|n−jW j =

n∑
j=K+1

Cjn|β1|j |β2|n−jW j +

K∑
j=0

Cjn|β1|j |β2|n−jW j

4
n∑

j=K+1

Cjn|β1|j |β2|n−jC1π> +
K∑
j=0

Cjn|β1|j |β2|n−jW j

4
( n∑
j=0

Cjn|β1|j |β2|n−j
)
C1π> +

K∑
j=0

Cjn|β1|j |β2|n−jW j

= (|β1|+ |β2|)nC1π> +
K∑
j=0

Cjn|β1|j |β2|n−jW j ,(5.8)

where the second inequality is due to Wn 4 C1π>. Further note that
|β1|j |β2|n−j < (|β1| + |β2|)n (0 ≤ j ≤ n), and CKn ≤ nK . As a result,
for n > K we have,

(5.9) |Gn|e 4 nK(|β1|+ |β2|)nM,

where M = C1π> +
∑K

j=0W
j is defined in (a) of Lemma 2. It is easy to

verify that (5.9) also holds for n = 1, · · · ,K−1. Then we have |Gn(G>)n|e 4
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n2K(|β1|+ |β2|)2nMM> for any positive integer n. As a result, (5.1) can be
proved.
Proof of (b). First of all, let k1 = k2 = 1 and then gj,1,1(G,W ) =
|WGj(G>)jW>|e. We first prove (5.2). By (5.9) we have |WGj |e 4 jK(|β1|+
|β2|)jWM and WM = C1π> +

∑K+1
j=1 W j , where the equality is due to

W1π> = 1π>. As a result, we have

(5.10) |WGj(G>)jW>|e 4 j2K(|β1|+ |β2|)2jM,

whereM is defined asM = WMM>W>. As a result, we have
∑∞

j=0N
−1{1>

WGj(G>)jW>1
}1/2 ≤ N−1α(1>M1)1/2, where α =

∑∞
j=0 j

K(|β1|+|β2|)j <
∞. Then it leads to show N−21>M1 → 0. It can be verified 1>M1 =
N2C

∑
j π

2
j+
∑K+1

j=1 1>W j(W>)j1+2NC
∑

j π
>(W>)j1+

∑
i 6=j 1>W i(W>)j1.

For the last two terms of 1>M1, by Cauchy inequality, we have

N
∑
j

π>(W>)j1 ≤ N
(∑

j

π2j

)1/2{
1>W j(W>)j1

}1/2
,

∑
i 6=j

1>W i(W>)j1 ≤
∑
i 6=j

{
1>W i(W>)i1

}1/2{
1>W j(W>)j1

}1/2
.

As a result, it leads to show

N∑
j=1

π2j → 0 and N−21>W j(W>)j1→ 0(5.11)

for 1 ≤ j ≤ K + 1. As the first convergence in (5.11) is implied by (C2.1),
we next prove N−21>W j(W>)j1 → 0 (1 ≤ j ≤ K + 1). Recall that
W ∗ = W + W>. Thus it can be easily verified W 4 W ∗ and W> 4 W ∗.
As a result, we have N−21>W j(W>)j1 ≤ N−21>W ∗2j1. Then it suf-
fices to show N−21>W ∗2j1 → 0. By eigendecomposition of W ∗ we have
W ∗ =

∑
k λk(W

∗)uku
>
k , where λk(W

∗) and uk ∈ RN are the kth eigenvalue
and eigenvector of W ∗ respectively. As a result, we have N−21>W ∗2j1 =
N−2

∑
k λk(W

∗)2j(1>uk)
2 ≤ N−2λmax(W ∗)2j

∑
k(1
>uk)

2 = N−1λmax(W ∗)2j

(1 ≤ j ≤ K + 1), where the last equality is due to
∑

k(1
>uk)

2 = N . S-
ince we have λmax(W ∗) = O(logN), it then leads to the conclusion that
N−1λmax(W ∗)2j → 0 for 1 ≤ j ≤ K + 1. As a consequence, the second
term in (5.11) holds. Similarly, it can be proved that (5.11) holds for all
0 ≤ k1, k2 ≤ 1. As a result, we have (5.2) holds.

We next prove (5.3) with k1 = k2 = m1 = m2 = 1, and gi,1,1(G,W )gj,1,1(G,
W ) = |WGi(G>)iW>WGj(G>)jW>|e. Then it can be similarly proved for
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other cases (i.e., 0 ≤ k1, k2,m1,m2 ≤ 1). Note that by (5.10), we have[
tr
{
WGi(G>)iW>WGj(G>)jW>

}]1/2
≤ iKjK(|β1|+ |β2|)i+jtr

{
M2

}1/2
.

It then can be derived thatN−1
∑∞

i,j=0[tr{WGi(G>)iW>WGj(G>)jW>}]1/2

≤ α2N−1tr
{
M2

}1/2
. In order to obtain (5.3), it suffices to show that

(5.12) N−2tr{M2} → 0.

Equivalently, by Cauchy inequality, it suffices to prove (
∑
π2j )

2 → 0, and

N−2tr{W jW j>W jW j>} → 0 holds for 1 ≤ j ≤ K + 1. It can be eas-
ily verified the first term holds by (C2.1). For the second one, we have

N−2tr{W jW j>W jW j>} ≤ N−2tr{(W ∗)4j} = N−2
∑

k λk(W
∗)4j ≤ N−1

λmax(W ∗)4j ≤ N−1λmax(W ∗)4(K+1). Similarly, due to that λmax(W ∗) =
O(logN) in (C2.2), we have N−1λmax(W ∗)4(K+1) → 0 as N → ∞. Conse-
quently, we have (5.12) and then (5.3) holds. This completes the proof of
(b).
Proof of (c). Similarly, let k1 = k2 = 1, and f1,1(W,Q) = |WQW>|e =
|W (I−G)−1(I−G>)−1W>|e. We first establish the upper bound for |WQW>|e.
Note that (I −G)−1 =

∑∞
j=0G

j . As a result, for any integer k > 0 we have

|W (I −G)−1|e =

|W (

∞∑
j=0

Gj)|e 4
∞∑
j=0

|WGj |e 4
∞∑
j=0

jK(|β1|+ |β2|)jWM = αWM,

where the last inequality is due to (5.9). Then we have |W (I − G)−1|e 4
αWM . As a result, it can be derived that

|WQW>|e 4 |W (I −G)−1|e|W (I −G)−1|>e
4 α2WMM>W> = α2M.(5.13)

Consequently, (5.4) and (5.5) can be proved due to (5.11) and (5.12).
At last, we only prove (5.6) with k1 = k2 = m1 = m2 = 1. By (5.10) and

(5.13), it can be obtained that

1

N

∑
j

[
tr
{
WGj(G>)jW>WQW>

}]1/2
≤ α

N

∑
j j

K(|β1|+ |β2|)jtr
{
M2

}1/2
= α2

[
N−2tr

{
M2

}]1/2
→ 0,

where the last convergence is due to (5.12). As a result, one can obtain (5.6).
This completes the proof of Lemma 2.
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6. Proof of Proposition 2. Let ζi = N−1/2T−1η>
∑

tX
>
i(t−1)εit, SN =∑N

i=1 ζi, and Fi = σ{εjt, 1 ≤ j ≤ i, 0 ≤ t ≤ T}. Therefore we have
E(ζi+1|Fi) = 0. Consequently, {Si,Fi, 1 ≤ i ≤ N} is a martingale sequence.
By a method similar to that of Step 2 in Appendix B.2, we can show that
SN =

√
N Σ̂xe →d N(0, σ2T−1Σ) as N → ∞, which, together with (A.1),

completes the proof.

7. Verification of Conditions (C2)-(C3). We devote this section to
verify the technical conditions (C2) and (C3) for the simulation studies and
the real data analysis.

7.1. Connectivity Analysis (I). Condition (C2.1) assumes that the net-
work W is fully connected within a finite number of steps. To check this,
we conduct a simulation analysis as follows. Fix N = 1000. We then gener-
ate the network structure as the three simulation examples in Section 4.1.
Specifically, for stochastic block model we set block number K = 4, and
for power-law distribution model we set α = 3. Other parameters remains

the same as in Section 4.1. Write Wn = (w
(n)
ij ), where w

(n)
ij represents the

probability that the i, j could connect with each other in the n step. We

then calculate the network density as NDn =
∑

i,j I(w
(n)
ij > 0)/N2. For a re-

liable evaluation, we replicate the experiment 1000 times and the NDn value
are averaged for each 1 ≤ n ≤ 10. We then report these averaged values in
Figure 1. We find that, even though the original network density (i.e., ND1)
is very low, however, it increases rapidly. After (for example) 6 steps, the
whole network becomes pretty much fully connected with NDn values ex-
tremely close to 100%. This corroborates with the six degrees of separation
theory well [3]. Similar analysis is also conducted for the real data analysis
and the findings are extremely similar.

7.2. Connectivity Analysis (II). Condition (C2.1) also assumes that
∑

j π
2
j

should converge to 0 as N →∞. We then simulate network structures as in
Appendix C.1. However, the difference is that we allow N to increase from
N = 200 to N = 1000. For each simulated network with size N , we compute
its Π(N) =

∑
j π

2
j value. Then, the experiment is randomly replicated for

1000 times and the resulting Π(N) values are boxplotted for each N . The
detailed results are given in Figure 2. We do find that a clear pattern for
Π(N) → 0 as N → ∞. For the real data example, the network size N is
fixed. However, we can still compute its Π(N) value, which is given by 0.002
and seems extremely small.
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7.3. Uniformity. Condition (C3) requires that λmax(W ∗) < C logN . We
then replicate the three simulation examples as in Appendix C.2. However,
for each simulated network structure, we compute τmax(N) = λmax(W ∗)/
log(N) value. Then, the 1000 randomly replicated τmax(N) values are box-
plotted for each N in Figure 3. We find that they are all well bounded by
a constant C = 2. For the real dataset, the τmax(N) values is given by 0.41.
It is also bounded by C = 2.

7.4. Law of Large Numbers. We then consider how to verify the law of
large number type conditions in (C3). Once again, we simulate the data
according to the three simulation examples in Section 4.2 with identical
parameter setup. In order to verify this condition, one natural way is to
compute those κ-values according to the analytical formula given in (C3).
However, we find this task computationally extremely challenging. This is
because it involves Γ(0). The computation of Γ(0) depends on G⊗G, which
is a N2 × N2 matrix; see (2.5). This makes the computation extremely
expensive. One natural solution to this problem is to replace Γ(0) by its
sample estimate, that is Γ̂(0) = T−1

∑
t(Yt−Ȳ)(Yt−Ȳ)> and Ȳ =

∑
tYt/T .

By treating Γ̂(0) as if it were Γ(0), then the quantities in condition (C3)
(e.g., N−1tr{Γ(0)} and so on) can be computed. We randomly replicate the
experiment for 1000 times, and then boxplot these quantities in Figure 4, 5,
and 6. A clear convergence pattern can be detected.
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Fig 1. Connectivity Analysis: black (◦) for dyad independence model, red (4) for
stochastic block model, and blue (+) for power-law distribution model. After 6 steps,
the whole network becomes fully connected with ND values close to 100%.
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Fig 2. Π(N) versus N . The left panel for dyad independence model; The middle
panel for stochastic block model; The right panel for power-law distribution model.
There is a clear pattern that Π(N)→ 0 as N →∞.
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Fig 3. τmax(N) versus N . The left panel for dyad independence model; The middle
panel for stochastic block model; The right panel for power-law distribution model.
They are all well bounded by a constant C = 2.
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Fig 4. Quantities of (C3) for dyad independence model. The top left panel for
N−1tr{Γ(0)}; The top right panel for N−1tr{WΓ(0)}; The bottom left panel for
N−1tr{(I −G)−1}; The bottom right panel for N−1tr(Q). A clear convergence pat-
tern can be detected as N →∞.
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Fig 5. Quantities of (C3) for stochastic block model. The top left panel for
N−1tr{Γ(0)}; The top right panel for N−1tr{WΓ(0)}; The bottom left panel for
N−1tr{(I −G)−1}; The bottom right panel for N−1tr(Q). A clear convergence pat-
tern can be detected as N →∞.
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Fig 6. Quantities of (C3) for power-law distribution model. The top left panel for
N−1tr{Γ(0)}; The top right panel for N−1tr{WΓ(0)}; The bottom left panel for
N−1tr{(I −G)−1}; The bottom right panel for N−1tr(Q). A clear convergence pat-
tern can be detected as N →∞.



14

References.

[1] Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2014). Hierarchical Modeling and
Analysis for Spatial Data, London, CRC Press.

[2] Meyn, S. P. and Tweedie, R. L. (2012). Markov Chains and Stochastic Stability,
New York, Springer Science and Business Media.

[3] Newman, M., Barabasi, A. L. and Watts, D. J. (2006). The Structure and Dy-
namics of Networks, New Jersey, Princeton University Press.


	Verification of (2.6) and (2.7)
	Proof of Theorem 1
	Proof of Theorem 4
	Proof of Theorem 5
	Two Useful Lemmas
	Proof of Lemma 1
	Proof of Lemma 2

	Proof of Proposition 2
	Verification of Conditions (C2)-(C3)
	Connectivity Analysis (I)
	Connectivity Analysis (II)
	Uniformity
	Law of Large Numbers

	References

