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Abstract: As one of the most popular classification methods, the logistic regression

model has been studied extensively. Essentially, the model assumes that an indi-

vidual’s class label is influenced by a set of predictors. However, with the rapid

advance of social network services, social network data are becoming increasingly

available. As a result, incorporating this additional network structure in order to

improve classification accuracy has become an important research problem. To

this end, we propose a network-based logistic regression (NLR) model that takes

the network structure into consideration. Four interesting scenarios are used to

investigate the link formation of the network structure under the NLR model. Fur-

thermore, we determine the impact of the network structure on classification by

deriving the asymptotic properties for the prediction rule under different sparsities

of network. Lastly, simulation studies are conducted to demonstrate the finite-

sample performance of the proposed method, and a real Sina Weibo data set is

analyzed for illustrative purposes.
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1. Introduction

Classification methods have been used extensively in empirical studies to an-

alyze data with categorical responses. These methods have a wide range of appli-

cations in fields such as finance, medicine, and sociology, among others (Michie,

Spiegelhalter and Taylor (1994); Hastie, Tibshirani and Friedman (2001)). Of the

many existing classification methods, the logistic regression (LR) model has been

widely studied (McCullagh and Nelder (1989); Hosmer, Lemeshow and Sturdi-

vant (2013); Lindquist and Mckeague (2012); Polson, Scott and Windle (2013)).

The LR model essentially assumes that all individuals are independent of each

other, and only the data (i.e., predictors or attributes) obtained from each in-

dividual are utilized for classification. For instance, when predicting a person’s

credit risk (i.e., good or bad), predictors such as status of residence, age, and

annual income could be considered (Hand and Henley (1997)).

Today, with the rapid advance of information technology, social network-
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related services and websites have emerged (e.g., Twitter, Facebook, Sina Weibo,

and WeChat). As a result, social network data are becoming increasingly avail-

able. A social network refers to a group of individuals (i.e., nodes) connected to

each other through various relationships (i.e., edges), such as friendship, kinship,

and common interest (Wasserman and Faust (1994)). Social network analyses

have attracted much attention in fields, such as economics, marketing, and fi-

nance (Carrington, Scott and Wasserman (2005)).

In the field of statistics, the exponential random graph model (ERGM) is

one of the most popular methods used for network modeling (Lusher, Koskinen

and Robins (2012)). The p1 model (Holland and Leinhardt (1981)), which can be

regarded as the seminal work in this area, is a simple ERGM. The Markov graphs

model of Frank and Strauss (1986) provided a milestone in the development of

the ERGM. However, the model was not widely adopted by practitioners until

the late 1990s, when a series of studies (Wasserman and Pattison (1996, 1999);

Robins, Pattison and Wasserman (1999)) extended the log-linear type model

to the p∗ model, that is, an ERGM. Thereafter, the ERGM became a powerful

method for network modeling and has been widely explored (Robins et al. (2007);

Schweinberger (2011); Almquist and Butts (2014)). In addition to the ERGM,

the network block model (Holland, Laskey and Leinhardt (1983); Wang and Wong

(1987); Nowicki and Snijders (2001); Kolaczyk and Csardi (2014)) and the latent

network model (Hoff, Raftery and Handcock (2002); Sarkar and Moore (2005);

Handcock, Raftery and Tantrum (2007); Sewell and Chen (2015)) are two popular

network modeling methods that have been widely investigated. Moreover, several

recent studies focus on modeling the network evolution (Almquist and Butts

(2014); Arabshahi et al. (2015)), where the data are the network structure and

each individual’s predictors at different time points. The aim is to predict the

entry and exit of a node on given days.

Our data contain both the class label and the predictors for each individual,

as well as the network structure between these individuals. Unlike the network

modeling methods mentioned above, which regard the edges of a network as

responses, our main focus is on incorporating the network structure into the

traditional classification problem (i.e., the class label is regarded as the response).

In the field of statistics, the autologistic actor-attribute model (Robins, Pat-

tison and Elliott (2001) ALAAM) utilizes network information for classification.

Essentially, it is an LR model that assumes that the class label of each individual

depends on both the predictors and its neighbors’ information on the network

(e.g., as actor 2-star, event 2-star, etc.). An approximate algorithm, the pseudo-
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likelihood method (Strauss and Ikeda (1990)), is adopted for inference purposes.

The ALAAM treats some network statistics as additional predictors. However,

there is no scientific guidance on how to decide which network statistics should

be employed. Furthermore, this method dose not model the network structure;

that is, the network is regarded as deterministic.

To this end, we propose a network-based logistic regression (NLR) model

that takes the network structure into consideration. The NLR model assumes

that whether two nodes are connected is influenced by their class labels and

by the similarity in their predictors. Furthermore, the attributes of each node

are employed to predict the labels using the classical LR model. The proposed

NLR model offers greater flexibility, and provides intuitive explanations under

various scenarios about the link formation of the network structure. Moreover,

we examine the impact of the network structure on classification by developing

approximation algorithms under different sparsities of network and establish their

corresponding theoretical properties.

The rest of the paper is organized as follows. Section 2 introduces the NLR

model, including the approximate prediction procedures and their corresponding

theoretical properties. In Section 3, a number of simulation studies are conducted

to demonstrate the finite-sample performance of our proposed method, and a real

Sina Weibo data set is analyzed to provide an empirical explanation. Section 4

concludes the paper. All technical proofs are left to the Appendix.

2. Network-based Logistic Regression Model

2.1. Model and notation

Let {Yi, Xi} be the observation collected from the ith (1 ≤ i ≤ n) node,

where n is the total sample size, Yi ∈ {0, 1} is the binary response, and Xi =

(Xi1, . . . , Xip)
>∈Rp is the associated p-dimensional predictor, where p is assumed

to be fixed. Given Xis, assume that different Yi are independent of each other,

and that the regression relationship is given by

P (Yi = 1|Xi) =
exp(X>i β)

1 + exp(X>i β)
, (2.1)

where β = (β1, . . . , βp)
> ∈ Rp is a p-dimensional regression coefficient vector.

Write Y = (Y1, . . . , Yn)> ∈ Rn and X = (X1, . . . , Xn)> ∈ Rn×p. To describe

the network structure, define A = (aij) ∈ Rn×n as the adjacency matrix, where

aij = 1 if node i follows node j, otherwise aij = 0. Note that A can be asymmetric

because node i following node j does not necessarily mean that the reverse is true.
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We follow tradition, and let aii = 0, for any 1 ≤ i ≤ n (Lee (2004)). Given Y
and X, assume that the edges (i.e., aij) are independent of each other, such that

P (aij = 1|Yi = k1, Yj = k2, Xi, Xj) =
exp(φsij + ωk1k2)

1 + exp(φsij + ωk1k2)

.
= πk1k2ij , (2.2)

where k1, k2 ∈ {0, 1}, sij represents the similarity of node i and node j, according

to their predictors, φ indicates the strength of the influence of the similarity on

the link probability, and ωk1k2 is a coefficient that reflects the effect of the class

labels on the link probability. This is also an LR model. Together, (2.1) and

(2.2) constitute the NLR model. Note that the absolute values of the similarities

are assumed to be no more than one. In our numerical studies, we use the

cosine similarity (sij =‖ Xi ‖−1‖ Xj ‖−1 X>i Xj) for continuous variables and a

simple matching coefficient for binary variables (sij = p−1
∑p

k=1 I(Xik = Xjk))

(Kaufman and Rousseeuw (2009)). Write θ = (β>, φ, ω>)> ∈ Rp+5, where ω =

(ω11, ω10, ω01, ω00)
> ∈ R4. From (2.1) and (2.2), given X, the likelihood function

can be expressed as

L(θ) = P (Y, A|X) = P (Y|X)P (A|Y,X)

=

n∏
i=1

P (Yi|Xi)

n∏
i 6=j

P (aij |Yi, Yj , Xi, Xj)

=

n∏
i=1

{
exp(X>i β)

1 + exp(X>i β)

}Yi
{

1

1 + exp(X>i β)

}1−Yi

n∏
i 6=j

∏
k1,k2

{
(πk1k2ij )aij (1− πk1k2ij )1−aij

}I(Yi=k1,Yj=k2)
, (2.3)

where I(·) is the indicator function. Denote the maximum likelihood estimator

(MLE) of (2.3) as θ̂ = (β̂>, φ̂, ω̂>)> = arg maxθ L(θ). Furthermore, we can verify

that θ̂ can be derived from two separate LR models. Note that the collinearity

of the statistics in (2.2) means we can rewrite the model as logit(π
YiYj

ij ) = ω00 +

φsij + (ω11−ω00)YiYj + (ω10−ω00)Yi(1− Yj) + (ω01−ω00)(1− Yi)Yj and derive

the corresponding estimator, where logit(x) = log{x/(1− x)}.

2.2. Prediction using the NLR model

As a standard classification method, we should consider how to predict the

unknown class labels after the model is fitted. To this end, the leave-one-out

method is adopted to construct a prediction rule. Statistically, this amounts

to evaluating the conditional probability P (Yi = 1|Y(−i),X, A), where i is an

arbitrarily selected node, and Y(−i) = (Yj : j 6= i)> ∈ Rn−1. After algebraic
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calculation, we have P (Yi = 1|Y(−i),X, A) ∝

exp(X>i β)

1 + exp(X>i β)

n∏
j 6=i

∏
k=0,1

{
(π1kij )aij (1− π1kij )1−aij (πk1ji )aji(1− πk1ji )1−aji

}I(Yj=k)
,

with some constants ignored. Then, the logit transformation is given by

logit{P (Yi = 1|Y(−i),X, A)} = X>i β +Q1 +Q2 +Q3 +Q4

+Q5 +Q6 +Q7 +Q8, (2.4)

where Qj is defined as follows:

Q1 =

n∑
j 6=i

aijYj log
π11ij
π01ij

, Q2 =

n∑
j 6=i

ajiYj log
π11ji
π10ji

,

Q3 =

n∑
j 6=i

aij(1− Yj) log
π10ij
π00ij

, Q4 =

n∑
j 6=i

aji(1− Yj) log
π01ji
π00ji

,

Q5 =

n∑
j 6=i

(1− aij)Yj log
1− π11ij
1− π01ij

, Q6 =

n∑
j 6=i

(1− aji)Yj log
1− π11ji
1− π10ji

,

Q7 =

n∑
j 6=i

(1− aij)(1− Yj) log
1− π10ij
1− π00ij

, Q8 =

n∑
j 6=i

(1− aji)(1− Yj) log
1− π01ji
1− π00ji

.

In order to better understand (2.4), we consider the following four scenarios.

SCENARIO 1. (Similarity Model) In the first scenario, we consider a

simple network structure that assumes that ω11 = ω10 = ω01 = ω00. As a result,

the terms Q1 to Q8 in (2.4) are all zero. The prediction rule is equivalent to the

classical LR model. In particular, if φ = 0, model (2.2) degenerates to the ER

model of Erdös and Rényi (1959).

SCENARIO 2. (Homophily) In the second scenario, we study the phe-

nomenon of “homophily,” also known as “love of the same.” More specifically, it

is assumed that ω00 > ω01, ω00 > ω10, and ω11 > ω01, ω11 > ω10. Thus, given

X, nodes with the same label are more likely to be connected. As a result, the

log-terms in Q1, Q2, Q7, and Q8 are positive, and in Q3, Q4, Q5, and Q6, they

are negative. For example, for Q1, a greater number of i’s receivers (i.e., node j

with aij = 1) being labeled as 1 (i.e., Yj = 1) makes it more likely that node i will

be labeled as 1 (i.e., Yi = 1). To summarize, under this scenario, the probability

that node i is labeled as 1 (i.e., Yi = 1) is positively influenced by (a) the number

of i’s friends (i.e., j with aij = 1 or aji = 1) with a label of 1, and (b) the number

of i’s nonfriends (i.e., j with aij = 0 or aji = 0) with a label of 0.
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SCENARIO 3. (Heterophily) In contrast to scenario 2, we focus on the

phenomenon of “heterophily,” also known as “love of the different.” Here, nodes

with distinct labels are more likely to be connected; that is, ω00 < ω01, ω00 < ω10,

and ω11 < ω01, ω11 < ω10. In such a case, the log-terms in Q1, Q2, Q7, and Q8

are negative, and in Q3, Q4, Q5, and Q6, they are positive. Consequently, given

X, the probability that node i is labeled as 1 is positively influenced by (a) the

number of i’s friends with a label of 0, and (b) the number of i’s nonfriends with

a label of 1.

SCENARIO 4. (Core-Periphery) In the last scenario, class 1 is regarded

as the “core” and class 0 is regarded as the “periphery,” without loss of generality.

Accordingly, assume ω00 < min{ω01, ω10} ≤ max{ω01, ω10} < ω11, which means

that nodes are most likely to be connected between the core, and least likely to

be connected between the periphery. Under this assumption, the log-terms in

Q1, Q2, Q3, and Q4 are positive, and in Q5, Q6, Q7, and Q8, they are negative.

Therefore, given X, the more friends node i has, regardless of their labels, the

more likely it is that node i will be labeled as 1. In addition, the more nonfriends

node i has, the more likely it is that node i will belong to class 0.

2.3. Asymptotic results

So far, we have discussed four scenarios with distinct relationships between

the ω values. Next, we consider a more general situation of the sparsity of real

social networks. Note that a network is called sparse if the network density

(i.e., {n(n− 1)}−1
∑n

i 6=j aij) tends to zero as the network size n tends to infinity

(Kolaczyk (2009)). To impose sparsity, assume there exist positive constants

ck1k2 and γ, where ωk1k2 = ck1k2 − γ log n, for k1, k2 ∈ {0, 1}, from which it can

be deduced that there exist some positive constants κ1 and κ2, such that for any

i, j, k1, k2,

P (κ1n
−γ ≤ πk1k2ij ≤ κ2n−γ) −→ 1, (2.5)

which indicates that as n gets larger, the link probabilities become smaller. Next,

we need to determine a sensible choice for γ. From (2.5), we know immediately

that the network is sparse, because E(aij) = O(n−γ), which shows that the

network density tends to zero as n tends to infinity. Then, the expected out-

degree is E(di) = O(n1−γ), where di =
∑n

j 6=i aij is defined as the out-degree of

node i. As a result, we must have γ ≤ 1. Otherwise, E(di)→ 0 as n→∞. This

implies that a larger network means fewer nodes are followed. In practice, this is

obviously incorrect. Thus, we need to examine the asymptotic properties of the
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proposed NLR model with (1) γ = 1, and (2) γ < 1.

Case I. (γ = 1) In this case, E(di) = O(1), which means there is an upper

bound for the expected nodal out-degree. In practice, this is a common require-

ment by many social network platforms. Consider, for example, the Sina Weibo,

which is the largest Twitter-type social media in China. Each user in Weibo is

limited to following 2,000 followees. This implies that di ≤ 2,000, which sets an

upper bound for the nodal out-degree. The next theorem follows from (2.4).

Theorem 1. Assume γ = 1, and that X1, . . . , Xn are independent and identi-

cally distributed (i.i.d.). As n→∞, we have (1) max5≤j≤8{var(Qj)}/min1≤j≤4
{var(Qj)} → 0, and (2) max5≤j≤8{var(Qj)}/var(X>i β)→ 0.

The proof of Theorem 1 is given in Appendix A. From Theorem 1, we know

that the variability of Qj with 1 ≤ j ≤ 4 and X>i β is much larger than that of

Qj′ , with 5 ≤ j′ ≤ 8. As a result, we propose the following approximate logit

function for prediction purposes:

ANLR1 = X>i β +Q1 +Q2 +Q3 +Q4. (2.6)

Case II. (γ < 1) By assuming γ < 1, there is no upper bound on the nodal

out-degree. This may be unrealistic in real life, but we still consider this case

for theoretical completeness. Moreover, with the rapid advance of information

technology, the upper bound imposed on the nodal out-degree could be unlimited.

Theoretically, we can treat it as infinity; thus, γ < 1 (i.e., E(di)→∞ as n→∞)

should be allowed. This leads to the following theorem.

Theorem 2. Assume 0 < γ < 1, and that X1, . . . , Xn are i.i.d.. As n → ∞,

we have (1) max5≤j≤8{var(Qj)}/min1≤j≤4{var(Qj)} → 0, and (2) var(X>i β)/

min1≤j≤4{var(Qj)} → 0.

The proof of Theorem 2 is given in Appendix B. From Theorem 2, we can

conclude that var(Qj)/var(Qj′) = o(1), for 5 ≤ j ≤ 8 and 1 ≤ j′ ≤ 4. As a result,

we propose the following different approximate logit function for predictions when

0 < γ < 1:

ANLR2 = Q1 +Q2 +Q3 +Q4. (2.7)

To conclude this subsection, recall that Q5 to Q8 represent the effects of

disconnected nodes. As a result, the above theorems tell us that the contribution

of disconnected nodes to a classification is limited under certain sparsity condi-

tions. This implies that we can predict the class label of a particular node only

from its neighbors. Moreover, as the network becomes more dense (i.e., Case II
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with E(di) → ∞ as n → ∞), the effects of the nodal predictors (i.e., Xis) on

the classification could be omitted. The simulation studies in the next section

further verify that (2.6) and (2.7) perform almost as well as (2.4). As a result, the

approximate prediction is both theoretically and practically sound. In practice,

we substitute the MLE (i.e., θ̂) into (2.6) and (2.7) when performing predictions.

3. Numerical Studies

3.1. Simulation models

To demonstrate the finite-sample performance of the proposed method, we

present three simulation models. The models vary in terms of ω and φ (i.e.,

the generating mechanism of the adjacency matrix A) and the value of the

regression coefficient β. The predictor dimension is fixed to p = 5. Next,

Xi = (Xi1, . . . , Xi5)
> ∈ R5 is simulated from a multivariate normal distribu-

tion with mean 0 and covariance ΣX = (σj1j2) ∈ R5×5, where σj1j2 = 0.5|j1−j2|.

The class label Yi is then generated according to (2.1).

Model 1. (Homophily) In the “homophily” scenario, nodes are more likely

to be connected if they have the same label. As a result, it is required that ω00 >

ω01, ω00 > ω10, and ω11 > ω01, ω11 > ω10. We then let ω = (ω11, ω10, ω01, ω00)
> =

(log(0.8δ)−γ log n, log(0.5δ)−γ log n, log(0.5δ)−γ log n, log(0.8δ)−γ log n)> and

φ = 2, where γ > 0 and δ > 0 control the density of the network, and will be

specified subsequently. The network adjacency matrix A can then be derived

according to (2.2). Lastly, we let β = (−1, 0.8, 1, 0.5, 1.5)>.

Model 2. (Heterophily) In the second model, we consider the phe-

nomenon of “heterophily.” That is, nodes with different labels are more likely

to be connected. In order to mimic this kind of network structure, we set

ω = (ω11, ω10, ω01, ω00)
> = (log(0.5δ) − γ log n, log(0.8δ) − γ log n, log(0.8δ) −

γ log n, log(0.5δ) − γ log n)> and φ = −2. Similarly to Model 1, the network

adjacency matrix A can be derived accordingly. The regression coefficient is set

to β = (−0.3, 1,−1, 2, 0.5)>.

Model 3. (Core-Periphery) In the third simulation model, the phe-

nomenon of “core-periphery” is studied. The core is defined as the node labeled

as 1 in the network. In practice, the core may denote important people (e.g.,

movie star, political leader, or business elite). As a result, it is assumed that

the probability of important people being connected is much larger. We then

let ω = (ω11, ω10, ω01, ω00)
> = (log(0.8δ)− γ log n, log(0.4δ)− γ log n, log(0.4δ)−

γ log n, log(0.2δ)− γ log n)> and φ = 2. Lastly, fix β = (−1,−0.2, 1, 0, 3)>.
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3.2. Performance measurements and simulation results

For each simulation model, different network sizes are considered (i.e., n =

200, 500, 1,000). We also try different γ values, namely, γ = 0.1, 0.5, and 1, with

corresponding δ values of 0.1, 0.5, and 1. The experiment is randomly replicated

T = 1,000 times. Let A(t) = (a
(t)
ij ) be the generated network structure in the

tth replication, and let θ̂(t) = (β̂(t)
>
, φ̂(t), ω̂(t)>)> be the corresponding estimator.

We then consider the following measurements to gauge the performance of our

methodology.

First, the root mean squared errors (RMSEs) of the parameter estimators are

evaluated using RMSEβ = (T−1
∑T

t=1 ‖β̂(t)−β‖2)1/2, RMSEφ = (T−1
∑T

t=1 ‖φ̂(t)

−φ‖2)1/2, and RMSEω = (T−1
∑T

t=1 ‖ω̂(t) − ω‖2)1/2. Next, in order to evaluate

the model’s prediction accuracy, we generate another n0 = 500 testing samples

in each replication, as follows. Consider the first testing sample, indexed by

i = n + 1. In the tth replication, generate its predictor X
(t)
n+1 and class label

Y
(t)
n+1, according to (2.1). Then, generate the network links between the testing

sample and the existing n subjects using (2.2), which we denote as E(t)
(n+1) =

{a(t)i(n+1), a
(t)
(n+1)i, 1 ≤ i ≤ n}.

As long as we obtain X
(t)
n+1 and E(t)

(n+1), we can then predict the conditional

probability of P (Y
(t)
n+1 = 1|Y(t),X(t), X

(t)
n+1, A

(t),E(t)
(n+1)) using the following four

competing methods: (1) the NLR model, that is, prediction formula (2.4); (2)

the approximated NLR (ANLR) methods, that is, prediction formula (2.6) when

γ = 1 or (2.7) when γ < 1; (3) the classical LR model; and (4) the ALAAM. Note

that, for the sake of fairness, the statistics used in the ALAAM are the same as

those in the NLR. After removing the effect of collinearity, the final statistics

are Xi,
∑n

j 6=i aijYj ,
∑n

j 6=i ajiYj ,
∑n

j 6=i aij(1− Yj), and
∑n

j 6=i aji(1− Yj). We then

use the area under the receiver operating characteristic curve (AUC) value to

evaluate the out-of-sample prediction accuracy. We also report the mean value

of the network density (ND), as ND = (n2 − n)−1T−1
∑T

t=1

∑n
i 6=j I(a

(t)
ij = 1).

The simulation results are summarized in Table 1.

Because the performance of the model is qualitatively similar, we focus on

Model 1 for interpretation. First, we find that for different γ, the RMSE values

steadily decrease to zero as n increases, for both β̂, φ̂, and ω̂. For example, when

γ = 1, the RMSE value for β̂ drops from 66.653% to 28.017% as n increases from

200 to 1,000. At the same time, the network density drops from 0.537% to 0.108%,

which indicates that the network is becoming increasingly sparse. Second, for
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Table 1. Simulation results for three simulation models, with 1,000 replications. The
RMSE values (%) are reported for β, φ, and ω estimates. The AUC values are given
for the network-based logistic regression (NLR), approximate network logistic regression
(ANLR), traditional logistic regression (LR), and autologistic actor-attribute (ALAAM)
models. The network density (ND) is also reported.

RMSE(%) AUC Density
Model n β φ ω NLR ANLR LR ALAAM ND(%)

Homophily

γ = 0.1
200 68.679 5.651 10.359 0.975 0.964 0.895 0.965 5.882
500 39.337 2.367 4.392 0.996 0.977 0.900 0.987 5.404

1,000 27.661 1.157 2.211 1.000 0.981 0.900 0.994 5.065
γ = 0.5

200 67.276 6.998 13.164 0.958 0.949 0.896 0.950 3.643
500 40.879 3.452 6.473 0.977 0.964 0.899 0.969 2.345

1,000 27.884 2.069 3.862 0.987 0.971 0.900 0.979 1.675
γ = 1

200 66.653 18.424 35.134 0.908 0.908 0.896 0.904 0.537
500 39.719 11.580 21.647 0.912 0.912 0.899 0.911 0.216

1,000 28.017 7.992 15.188 0.913 0.913 0.900 0.912 0.108

Heterophily

γ = 0.1
200 65.385 5.538 10.318 0.971 0.953 0.871 0.961 5.807
500 39.050 2.323 4.361 0.995 0.973 0.876 0.987 5.334

1,000 26.770 1.167 2.213 1.000 0.978 0.877 0.995 5.000
γ = 0.5

200 64.737 6.983 13.076 0.949 0.933 0.871 0.941 3.598
500 39.162 3.484 6.491 0.972 0.954 0.875 0.964 2.312

1,000 26.616 2.001 3.803 0.985 0.963 0.876 0.977 1.651
γ = 1

200 65.757 17.848 34.097 0.887 0.887 0.871 0.883 0.529
500 38.909 11.181 21.351 0.892 0.891 0.875 0.891 0.213

1,000 26.954 8.033 15.187 0.894 0.893 0.877 0.893 0.107

Core-Periphery

γ = 0.1
200 89.847 6.802 12.603 0.991 0.977 0.928 0.985 4.027
500 49.125 2.851 5.360 0.999 0.997 0.931 0.997 3.689

1,000 34.153 1.390 2.744 1.000 1.000 0.931 1.000 3.452
γ = 0.5

200 84.265 8.406 16.471 0.981 0.949 0.928 0.975 2.478
500 49.200 4.060 8.094 0.991 0.979 0.930 0.988 1.586

1,000 33.184 2.434 4.715 0.996 0.991 0.931 0.993 1.133
γ = 1

200 87.528 22.414 44.651 0.940 0.940 0.929 0.937 0.362
500 49.527 13.986 27.013 0.944 0.943 0.931 0.942 0.146

1,000 33.028 9.810 19.243 0.944 0.944 0.932 0.944 0.073
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the out-of-sample prediction accuracy, the NLR model outperforms the classical

LR model and the ALAAM in terms of the AUC values. Moreover, when γ = 1,

the ANLR1 method is better than the ALAAM because the estimation using our

method is more accurate. When γ < 1, the X>i β term is ignored in ANLR2,

making it perform slightly worse than the ALAAM.

3.3. A Sina Weibo data set

We next present a real-data example from Sina Weibo (www.weibo.com),

which is the largest Twitter-type social media in China. The data set is collected

from an official Weibo account of an MBA program.

The sample includes n = 6,416 users, and each user is a follower of the

official account. The binary response considered is whether the user belongs

to the community called “Tsinghua,” which represents one of the most famous

universities in China; a user with this label means that he/she has taken the

MBA course in “Tsinghua.” Therefore, we have Yi = 1 for nodes carrying the

“Tsinghua” label, otherwise Yi = 0. To apply the NLR model, a set of nodal

predictors are collected, including (1) the gender of each user (i.e., male = 1

and female = 0), (2) whether the user is authenticated by Sina Weibo (e.g.,

movie star, business elite, or political leader), (3) the number of Weibo posts,

(4) the number of personal labels (created by users to describe their lifestyles

and career status), and (5) the tenure, measured in days (i.e., how long the user

has been registered). Furthermore, a log(1 + x) transformation is applied to the

continuous predictors (i.e., number of posts, number of labels, and tenure). The

final network density is around 0.33%, indicating a high level of sparsity.

We then apply the NLR model to this data set. The estimation results are

given in Table 2. From the first part of Table 2 (i.e., the results for model (2.1)),

authentication and the number of personal labels are statistically significant.

This shows that authenticated users with more personal labels are more likely to

belong to the “Tsinghua” community. Intuitively, the users authenticated by the

platform tend to be more active and professional. At the same time, having more

personal labels indicates a broader range of interests. We may consider that a

person with more professional abilities and broader interests is more likely to be

a member of the business elite and to take the MBA course. In addition, from

the results in the second part of Table 2 (i.e., the results for model (2.2)), we can

see that all coefficients are significant, indicating that both the similarity of the

predictors and the class labels affect the link probability. More specifically, ω̂ =

(−1.32,−3.63,−4.17,−5.13)> and φ̂ = −0.99. First, the estimation of ω shows

www.weibo.com
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Table 2. The estimation of the NLR model for the Sina Weibo data set.

Regression Coefficient Estimate S.E. p-value
Model-(2.1)
Intercept −5.77 1.51 < 0.001
Gender 0.32 0.19 0.094
Authentication 0.65 0.18 < 0.001
Number of Posts −0.08 0.07 0.211
Number of Personal Labels 1.48 0.19 < 0.001
Tenure −0.11 0.42 0.793
Model-(2.2)
ω00 −5.13 0.02 < 0.001
φ −0.99 0.03 < 0.001
ω11 − ω00 3.82 0.02 < 0.001
ω10 − ω00 1.50 0.01 < 0.001
ω01 − ω00 0.96 0.01 < 0.001

that the Sina Weibo network is a typical core-periphery network, because ω̂00 <

min{ω̂01, ω̂10} ≤ max{ω̂01, ω̂10} < ω̂11. Second, the significant difference between

ω̂01 and ω̂10 shows that the link pattern is asymmetric. Lastly, the coefficient of

feature similarity is significant and negative (i.e., φ̂), indicating that users with

different backgrounds are more likely to follow each other, whereas users with

similar backgrounds are less likely to follow each other, given their class labels.

Moreover, to evaluate the goodness fit of models (2.1) and (2.2), we calculate

their deviance values, which are 1,289.1 and 1,806,786.0. The corresponding p-

values for the goodness of fit are less than 0.001, which means that both models

fit the data well.

In order to evaluate the prediction accuracy of our proposed method, we

randomly split the samples into two sets. The first set contains 70% of the

samples for training, and the other contains the remaining 30% for testing. We

then apply the proposed NLR model to the training set and derive the model

estimation. Accordingly, the AUC is adopted to evaluate the prediction accuracy

of five competing methods (NLR, ANLR1, ANLR2, LR, ALAAM) on the testing

set. We randomly repeat this procedure 200 times. The AUC values, averaged

over 200 replications, are 0.923 (NLR), 0.923 (ANLR1), 0.891 (ANLR2), 0.749

(LR), and 0.913 (ALAAM). Thus, NLR and ANLR1 perform best, showing that

the first approximation (2.6) is reasonable, and that the influence of nonfriends

can be ignored. Moreover, the result for the ANLR2 method illustrates that the

effects of the predictors should not be dropped. Lastyly, we provide the ROC

curves for the five competing methods in Figure 1. The figure shows that the
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Figure 1. ROC curves of five methods (NLR, ANLR1, ANLR2, LR, and ALAAM)
applied to the Sina Weibo data set, where NLR, ANLR1, and ANLR2 show similar
results and outperform LR and ALAAM.

NLR model and its corresponding approximation methods have similar results,

and that they outperform the LR model and the ALAAM. Additionally, the LR

performs worst, because it ignores the network structure.

4. Conclusion

In this paper, we propose a novel probabilistic model for classification, that

incorporates a network’s structure into the classical LR model. We refer to

the proposed model as the network-based logistic regression (NLR) model. The

model assumes that the network links are dependent on the class labels and on

the nodes’ similarity. We also discuss the link formation of the network structure.

We further develop two approximate algorithms for model prediction, and derive

the asymptotic properties under different sparsities of network.

To conclude, we identify possible topics for further research. First, in prac-

tice, the number of classes may be more than two, which leads to a multiclass

classification problem. Extending the NLR model to solve this problem could

be an important research problem. Second, the dimension of the predictors (i.e.,

p) is assumed to be fixed. Thus, it would be of great interest to investigate the
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problem of variable selection under a high-dimensional framework for the NLR

model. Lastly, in addition to the classical LR model, there exist many other

methods for classification. Such methods include, but are not limited to support

vector machines (Zhang (2006); Wu and Liu (2007) SVM), boosting (Buhlmann

and Yu (2003); Zou, Zhu and Hastie (2008)), and so on. Whether the network

structure can be incorporated into these methods is also left for further study.
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Appendix

Appendix A: Proof of Theorem 1

The proof of Theorem 1 consists of three steps. The variances ofQ1 toQ4 and

Q5 to Q8 are calculated respectively in Steps 1 and 2. Then, the variance of X>i β

is derived in Step 3. For convenience, denote E(Yi|Xi) = {1 + exp(−X>i β)}−1 =

pi throughout the rest of the proof. It can be easily shown that pis are indepen-

dent and identically distributed with finite expectation.

Step 1. In this step, var(Q1) is mainly derived, and the result can be

extended to Q2 to Q4 easily. By (2.5) and γ = 1, we have π11ij = Op(n
−1) and

π01ij = Op(n
−1), for any i and j. As a result, it can be shown that log(π11ij /π

01
ij ) =

Op(1). Next, we evaluate the variance of Q1, i.e., var(Q1) =
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n∑
j 6=i

var

(
aijYj log

π11ij
π01ij

)
+

n∑
j 6=i

n∑
k 6=i,j

cov

(
aijYj log

π11ij
π01ij

, aikYk log
π11ik
π01ik

)

=

n∑
j 6=i

{
E

(
aijYj log2

π11ij
π01ij

)
− E2

(
aijYj log

π11ij
π01ij

)}

+

n∑
j 6=i

n∑
k 6=i,j

{
E

(
aijaikYjYk log

π11ij
π01ij

log
π11ik
π01ik

)

−E

(
aijYj log

π11ij
π01ij

)
E

(
aikYk log

π11ik
π01ik

)}

=

n∑
j 6=i

E

[
log2

π11ij
π01ij
{π11ij pi + π01ij (1− pi)}pj

]

−
n∑
j 6=i

E

[
log

π11ij
π01ij
{π11ij pi + π01ij (1− pi)}pj

]2

+

n∑
j 6=i

n∑
k 6=i,j

E

[
log

π11ij
π01ij

log
π11ik
π01ik
{π11ij π11ik pi + π01ij π

01
ik (1− pi)}pjpk

]

−
n∑
j 6=i

n∑
k 6=i,j

E

[
log

π11ij
π01ij
{π11ij pi + π01ij (1− pi)}pj

]

E

[
log

π11ik
π01ik
{π11ik pi + π01ik (1− pi)}pk

]
.

According to our assumptions, the order of the first two terms is O(1) and the

order of the last two terms is O(1). As a result, var(Q1) = O(1). Similarly, it

can also be obtained that var(Qj) = O(1) for 2 ≤ j ≤ 4.

Step 2. Analogous to the first step, we only need to evaluate the order of

var(Q5). By Taylor’s expansion, for any i and j, we have

log
1− π11ij
1− π01ij

= log

(
1 +

π01ij − π11ij
1− π01ij

)
≈
π01ij − π11ij
1− π01ij

= Op(n
−1).

Next, we need to compute the variance of Q5 as var(Q5) =

var

 n∑
j 6=i

Yj log
1− π11ij
1− π01ij

+ var

 n∑
j 6=i

aijYj log
1− π11ij
1− π01ij


− 2cov

 n∑
j 6=i

Yj log
1− π11ij
1− π01ij

,

n∑
j 6=i

aijYj log
1− π11ij
1− π01ij
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=

n∑
j 6=i

var

(
Yj log

1− π11ij
1− π01ij

)
+

n∑
j 6=i

n∑
k 6=i,j

cov

(
Yj log

1− π11ij
1− π01ij

, Yk log
1− π11ik
1− π01ik

)

+

n∑
j 6=i

var

(
aijYj log

1− π11ij
1− π01ij

)

+

n∑
j 6=i

n∑
k 6=i,j

cov

(
aijYj log

1− π11ij
1− π01ij

, aikYk log
1− π11ik
1− π01ik

)

− 2

n∑
j 6=i

cov

(
Yj log

1− π11ij
1− π01ij

, aijYj log
1− π11ij
1− π01ij

)

− 2

n∑
j 6=i

n∑
k 6=i,j

cov

(
Yj log

1− π11ij
1− π01ij

, aikYk log
1− π11ik
1− π01ik

)
.

Similar to step 1, some algebraic calculation shows that the order of the first

term is
n∑
j 6=i

var

(
Yj log

1− π11ij
1− π01ij

)
=

n∑
j 6=i

E

(
pj log2

1− π11ij
1− π01ij

)

−
n∑
j 6=i

E

(
pj log

1− π11ij
1− π01ij

)2

= O(n−1),

and the second term is
n∑
j 6=i

n∑
k 6=i,j

cov

(
Yj log

1− π11ij
1− π01ij

, Yk log
1− π11ik
1− π01ik

)

=

n∑
j 6=i

n∑
k 6=i,j

E

(
pjpk log

1− π11ij
1− π01ij

log
1− π11ik
1− π01ik

)

−
n∑
j 6=i

n∑
k 6=i,j

E

(
pj log

1− π11ij
1− π01ij

)
E

(
pk log

1− π11ik
1− π01ik

)
.

Because log (1− π11ij )/(1− π01ij ) = E(log(1− π11ij )/(1− π01ij )) + log(1− π11ij )/

(1− π01ij ) − E(log(1− π11ij )/(1− π01ij )), where E(log(1− π11ij )/1− π01ij ) = O(n−1)

and log(1− π11ij )/(1− π01ij ) − E(log(1− π11ij )/(1− π01ij )) = op(n
−1). At the same

time, E(pjpk) − E(pj)E(pk) = 0 due to the independence of pj and pk. Hence,

after some calculation, we have

E

(
pjpk log

1− π11ij
1− π01ij

log
1− π11ik
1− π01ik

)
−E

(
pj log

1−π11ij
1−π01ij

)
E

(
pk log

1−π11ik
1−π01ik

)
=o(n−2).
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Thus, the order of the second term is o(1). Similar to the calculation of the first

term and the second term, we have the orders of the third term to sixth term are

O(n−2), O(n−2), O(n−2) and O(n−1). Hence the order of all terms is o(1). As

a result, we have var(Q5) = o(1). It can also be derived that var(Qj) = o(1) for

6 ≤ j ≤ 8 in a similar way.

Step 3. Since Xis are independent and identically distributed, and the

dimension of predictor (i.e., p) is fixed, we have that var(X>i β) = β>var(Xi)β =

O(1) .

Combining the results in the above three steps, we can obtain the fol-

lowing two results, (1) max5≤j≤8{var(Qj)}/min1≤j≤4{var(Qj)} → 0 and (2)

max5≤j≤8{var(Qj)}/var(X>i β)→ 0. This completes the proof of Theorem 1.

Appendix B: Proof of Theorem 2

The proof of Theorem 2 consists of three steps. In step 1, we show the

variances of Qj (1 ≤ j ≤ 4) terms. In Step 2, we compute the variances of

Qj (5 ≤ j ≤ 8) terms. In the last step, we derive the variance of X>i β.

Step 1. In the first step, we evaluate the order of var(Q1), and the result

can be generalized to Q2 to Q4 easily. By assumption (2.5) and γ < 1, we have

π11ij = Op(n
−γ), π01ij = Op(n

−γ) and log(π11ij /π
01
ij ) = Op(1) for any i and j. Next,

we evaluate the variance of Q1 as follows, i.e., var(Q1) =
n∑
j 6=i

var

(
aijYj log

π11ij
π01ij

)
+

n∑
j 6=i

n∑
k 6=i,j

cov

(
aijYj log

π11ij
π01ij

, aikYk log
π11ik
π01ik

)

=

n∑
j 6=i

{
E

(
aijYj log2

π11ij
π01ij

)
− E2

(
aijYj log

π11ij
π01ij

)}

+

n∑
j 6=i

n∑
k 6=i,j

{
E

(
aijaikYjYk log

π11ij
π01ij

log
π11ik
π01ik

)

−E

(
aijYj log

π11ij
π01ij

)
E

(
aikYk log

π11ik
π01ik

)}

=

n∑
j 6=i

E

[
log2

π11ij
π01ij
{π11ij pi + π01ij (1− pi)}pj

]

−
n∑
j 6=i

E

[
log

π11ij
π01ij
{π11ij pi + π01ij (1− pi)}pj

]2
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+

n∑
j 6=i

n∑
k 6=i,j

E

[
log

π11ij
π01ij

log
π11ik
π01ik
{π11ij π11ik pi + π01ij π

01
ik (1− pi)}pjpk

]

−
n∑
j 6=i

n∑
k 6=i,j

E

[
log

π11ij
π01ij
{π11ij pi + π01ij (1− pi)}pj

]

E

[
log

π11ik
π01ik
{π11ik pi + π01ik (1− pi)}pk

]
.

According to our assumptions, the order of the first two terms is O(n1−γ) and

the order of the last two terms is O(n2−2γ). As a result, var(Q1) = O(n2−2γ).

Similarly, it can also be obtained that var(Qj) = O(n2−2γ) for 2 ≤ j ≤ 4.

Step 2. Analogous to the first step, we only need to evaluate the order of

var(Q5). By Taylor’s expansion, for any i and j, we have

log
1− π11ij
1− π01ij

= log

(
1 +

π01ij − π11ij
1− π01ij

)
≈
π01ij − π11ij
1− π01ij

= Op(n
−γ).

Next, we need to compute the variance of Q5 as var(Q5) =

var

 n∑
j 6=i

Yj log
1− π11ij
1− π01ij

+ var

 n∑
j 6=i

aijYj log
1− π11ij
1− π01ij


− 2cov

 n∑
j 6=i

Yj log
1− π11ij
1− π01ij

,

n∑
j 6=i

aijYj log
1− π11ij
1− π01ij


=

n∑
j 6=i

var

(
Yj log

1− π11ij
1− π01ij

)
+

n∑
j 6=i

n∑
k 6=i,j

cov

(
Yj log

1− π11ij
1− π01ij

, Yk log
1− π11ik
1− π01ik

)

+

n∑
j 6=i

var

(
aijYj log

1− π11ij
1− π01ij

)
+

n∑
j 6=i

n∑
k 6=i,j

cov

(
aijYj log

1−π11ij
1−π01ij

, aikYk log
1−π11ik
1−π01ik

)

− 2

n∑
j 6=i

cov

(
Yj log

1− π11ij
1− π01ij

, aijYj log
1− π11ij
1− π01ij

)

− 2

n∑
j 6=i

n∑
k 6=i,j

cov

(
Yj log

1− π11ij
1− π01ij

, aikYk log
1− π11ik
1− π01ik

)
.

Similar to step 1, some algebraic calculation shows that the order of the first

term is
n∑
j 6=i

var

(
Yj log

1− π11ij
1− π01ij

)
=

n∑
j 6=i

E

(
pj log2

1− π11ij
1− π01ij

)



NETWORK-BASED LOGISTIC REGRESSION 691

−
n∑
j 6=i

E

(
pj log

1− π11ij
1− π01ij

)2

= O(n1−2γ),

and the second term is
n∑
j 6=i

n∑
k 6=i,j

cov

(
Yj log

1− π11ij
1− π01ij

, Yk log
1− π11ik
1− π01ik

)

=

n∑
j 6=i

n∑
k 6=i,j

E

(
pjpk log

1− π11ij
1− π01ij

log
1− π11ik
1− π01ik

)

−
n∑
j 6=i

n∑
k 6=i,j

E

(
pj log

1− π11ij
1− π01ij

)
E

(
pk log

1− π11ik
1− π01ik

)
.

Because log(1− π11ij )/(1− π01ij ) = E(log(1− π11ij )/(1− π01ij )) + log(1− π11ij )/

(1− π01ij )− E(log(1− π11ij )(1− π01ij )), where E(log(1− π11ij )/(1− π01ij )) = O(n−γ)

and log(1− π11ij )/(1− π01ij ) − E(log(1− π11ij )/(1− π01ij )) = op(n
−γ). At the same

time, E(pjpk) − E(pj)E(pk) = 0 due to the independence of pj and pk. Hence,

after some calculation, we have

E

(
pjpk log

1− π11ij
1− π01ij

log
1− π11ik
1− π01ik

)
− E

(
pj log

1− π11ij
1− π01ij

)
E

(
pk log

1− π11ik
1− π01ik

)
= o(n−2γ).

Thus, the order of the second term is o(n2−2γ). Similar to the calculation of the

first term and the second term, we have the orders of the third term to sixth term

are O(n1−3γ), O(n2−4γ), O(n1−3γ) and O(n2−3γ). Hence the order of all terms is

o(n2−2γ). As a result, we have var(Q5) = o(n2−2γ). It can also be derived that

var(Qj) = o(n2−2γ) for 6 ≤ j ≤ 8 in a similar way.

Step 3. As proved in Appendix A, we know that var(X>i β) = O(1).

Combining the results derived in the above three steps, we obtain the con-

clusions (1) max5≤j≤8{var(Qj)}/min1≤j≤4{var(Qj)} → 0 and (2) var(X>i β)/

min1≤j≤4{var(Qj)} → 0, as n→∞. This completes the proof of Theorem 2.
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