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Abstract

In this work, we consider a random projection method for a large-scale com-
munity detection task. We introduce a random Gaussian matrix that generates
several projections on the column space of the network adjacency matrix. The k-
means algorithm is then applied with the low-dimensional projected matrix. The
computational complexity is much lower than that of the classic spectral cluster-
ing methods. Furthermore, the algorithm is easy to implement and accessible for
privacy preservation. We can theoretically establish a strong consistency result
of the algorithm under the stochastic block model. Extensive numerical studies
are conducted to verify the theoretical findings and illustrate the usefulness of
the proposed method.
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1. INTRODUCTION

With the rapid development of online network platforms, network data modelling

has received great attention. One of the most important tasks is community detection.

Community refers to a latent group of network nodes, which are more likely to be

connected with each other. In contrast, the nodes from different communities are less

likely to form links. For example, people sharing a common preference or coming from

the same neighborhood are more likely to interact in social networks. Discovering

the community structure has been proven useful in a wide range of scientific fields,

including social network analysis (Sojourner, 2013; Liu et al., 2017), financial risk

analysis (Härdle et al., 2016), biological studies (Marbach et al., 2010, 2012) and many

others. This makes community detection one of the most fundamental and interesting

topics in network data analysis.

A large amount of literature on community detection has been developed in recent

decades. Early approaches were mainly algorithm-based without model assumptions.

To name a few, Newman and Girvan (2004) proposed the detection of hierarchical

community by using certain types of edge betweeness of network nodes. Later, New-

man (2004) revised the algorithm by designing an optimal stopping rule based on a

novel modularity measure. Clauset et al. (2006) further improved the computational

efficiency of the algorithm to apply it to large-scale networks. The modularity max-

imization framework inspired many follow-up studies (Riedy et al., 2012; Ovelg¨onne

and Geyer-Schulz, 2013; De et al., 2014). Another major class of methods has been

established under statistical model assumptions. One of the most popular models is

the stochastic block model (SBM) proposed by Holland et al. (1983). This model

assumes that the nodes from the same community should have a greater probability

of being connected. In contrast, the nodes from different communities should have a
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much smaller likelihood. Karrer and Newman (2011) further characterize the nodes’

heterogeneity by devising a degree-corrected stochastic block model (DC-SBM). An-

other popular statistical model is the latent space model proposed by Handcock et al.

(2007). This model assumes that the nodes are positioned in a latent space and that

they are more likely to connect if their latent positions are closer. To estimate the

model parameters (i.e., the communities), both likelihood-based methods (Bickel and

Chen, 2009; Zhao et al., 2012) and spectral clustering methods (Rohe et al., 2010; Qin

and Rohe, 2013) are studied. Community detection consistency is established under

various model specifications and estimation methods (Lei and Rinaldo, 2015; Joseph

and Yu, 2016; Su et al., 2017).

Despite their usefulness, traditional community detection methods can present

great computational challenges, especially for large-scale networks. Consider for exam-

ple, the largest social network platform in the world: Facebook,. It has more than 1

billion registered users worldwide. Another famous online social platform in mainland

China, Sina Weibo, also has more than 100 million active users. For these large-scale

networks, the traditional methods suffer greatly from computational costs. Take the

modularity method of Newman (2004) as an example. As analyzed by Clauset et al.

(2006), its computational complexity is O(MN +N2), where M and N represent the

total number of edges and nodes in the network, respectively. The computational com-

plexity of the spectral clustering method is even higher. This is because the eigenvalue

decomposition in spectral clustering consumes a computational complexity of O(N3).

The pseudo likelihood method of Amini et al. (2013) typically uses spectral cluster-

ing to set its initial value, which makes its computational burden even heavier. The

latent space model (Handcock et al., 2007) usually uses Gibbs sampling for posterior

estimation, which is also time consuming. As a consequence, how to conduct commu-
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nity detection for large-scale networks in a computationally efficient way becomes a

problem of great interest.

To address this issue, we propose a random projection method for fast community

detection with large-scale networks. The basic idea is to generate a number of random

directions in an N -dimensional Euclidean space. Each row of the adjacency matrix is

then projected onto these directions. Therefore, their positions in a low-dimensional

projected space can be computed. Subsequently, the internode distance can be eval-

uated for an arbitrary node pair in the projected space. Under appropriate model

assumptions (e.g., the SBM model), we prove that the internode distance (after pro-

jection) of nodes from different communities should be uniformly larger than that of

nodes from the same community with probability tending to 1. This suggests that sim-

ple algorithms such as k-means can be employed to consistently discover the community

structure. The algorithm is easy to implement and accessible for privacy preservation.

Furthermore, a novel eigenvalue ratio criterion is adopted to automatically determine

the number of communities. Extensive simulation studies are conducted to demon-

strate the method’s empirical performances.

The rest of this paper is organized as follows. Section 2 introduces our random

projection method for community detection and then discusses its theoretical properties

under stochastic block model settings. Section 3 presents several numerical simulation

studies to illustrate the finite sample performance of the proposed method and shows

its performance in a real-world large-scale network dataset. Section 4 concludes the

paper and discusses some interesting future works. All technical details can be found

in the Appendix.
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2. METHODOLOGY

2.1. The Random Projection Method

Assume there are a total of N nodes in a network, which are indexed by 1 ≤

i ≤ N . Their network relationships are described by a network adjacency matrix

A = (aij) ∈ {0, 1}N×N , where aij = 1 if the i-th node and j-th node are connected to

each other, and aij = 0 otherwise. Let di =
∑N

j=1 aij denote the degree of nodes i and

D = diag(d1, ..., dN). Next, we assume that the network nodes can be grouped into a

total of K communities, which are indexed by 1 ≤ k ≤ K. Let Ci ∈ {1, 2, ...K} be

the community membership of the i-th node. Assume that the community size for the

k-th community is Nk as Nk =
∑N

i=1 I{Ci = k} for 1 ≤ k ≤ K. We know immediately

that
∑

k Nk = N . The objective here is to detect the underlying community structure

by exploiting the observed network adjacency matrix A.

As previously discussed, various community detection methods have been developed

in the literature. However, to the best of our knowledge, it seems that none of those

methods can be used to deal with truly large social networks. To solve this problem, we

propose a novel random projection method. We first consider an illuminating example.

Specifically, suppose that there is a network with only K = 2 communities with equal

sizes (N = 2n for some n > 0). Without loss of generality, we assume that the first

n nodes belong to the first community, and the rest belong to the second community.

Furthermore, assume that the connecting probabilities within the communities are

p = 1, and connection probabilities across the communities are q = 0. We consider

this ideal case for to illustrate our proposal, and we later establish our method in

more general settings. To implement our method, we need to first generate a random

projection direction as X = (X1, ..., XN)
⊤ ∈ RN , where each Xi is randomly generated
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from, for example, a standard normal distribution. Then, the projected vector can

be computed as Z = (Z1, Z2, ..., ZN)
⊤ = AX ∈ RN . Simple calculations reveal that

Zi = p
∑n

i=1 Xi for 1 ≤ i ≤ n and Zi = p
∑N

i=n+1 Xi for i > n. We find that the

nodes from the same community share identical projected locations. In contrast, the

nodes from different communities have different projected locations. This immediately

suggests that the community structure can be discovered by a careful study of Z.

More specifically, simple algorithms such as k-means can be readily used to serve this

purpose.

In practice, the problem could be much more complicated and challenging for the

following reasons. First, the intra-community link probability can never be as large as

p = 1. Instead, it is just a reasonably large number (e.g., p = 0.5). This obscures the

observed community structure in A, which inevitably makes the projected positions

in Z less accurate. Similarly, even though the inter-community link probability q

should be very small, it can hardly be as small as exactly 0. That also makes the

projected position in Z noisy. Furthermore, the random projection itself also introduces

additional noise, which could be large enough to cover the signals in Z. As a result, one

single random projection direction might be insufficient. In contrast, multiple random

projection directions are necessarily needed.

Inspired by the above discussion, we now propose here a novel random projection

method. The detailed algorithm in given in Algorithm 1. Specifically, we take the

network adjacency matrix A as an input. Next, with a pre-specified projection dimen-

sion d, we generate a random projection matrix as X = (X1, ..., Xd) ∈ RN×d. This

leads to the projected position for each node in a d-dimensional Euclidean space as

Z = AX ∈ RN×d. Typically, we expect d ≪ N . Here an ≪ bn implies an/bn → 0

as n → ∞. This enables us to apply simple algorithms (for example, the k-means
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algorithm) to Z directly so that the latent community structure can be discovered.

Algorithm 1 The Random Projection Clustering Algorithm
Input: Adjacency matrix A ∈ RN×N , latent dimension d, target clustering number K

1: Generate random direction matrix X ∈ RN×d from some probability distribution.
2: Calculate random projection matrix Z = AX.
3: Apply the k-means algorithm to the rows of Z.

Output: The clustered label for each node as {Ĉ1, ..., ĈN}.

It is noteworthy that the k-means algorithm can be sensitive to the choice of initial

cluster centers. To tackle this issue, many improvement algorithms have been developed

in the literature. For example, the k-means++ algorithm proposed by Arthur and

Vassilvitskii (2007) uses a novel initialization strategy to stabilize the performance of

classical k-means algorithm. In addition, the kmeans function in R also provides an

option nstart for specifying the number of initializations. In our numerical studies,

we use the kmeans function in R to implement the experiments and set a large nstart

number (e.g., 10) to obtain more stable results.

Next, we discuss the computational advantages of the proposed method with respect

to computational complexity. As shown in Algorithm 1, the random projection method

can be divided into two main steps. The first step is the projection step. That is, the

adjacency matrix A is projected in several random directions X into Z ∈ RN×d. This

leads to a total of O(N2d) computation operations. However, in practice, the adjacency

matrix A can be sparse. As a consequence, it can be stored as a sparse matrix (Clauset

et al., 2006) and then computed accordingly. In this case, the computational complexity

is mainly determined by the number of edges (rather than the network sizes). Assume

the total number of edges is given by M =
∑

ij aij. Then, the computational complexity

of this projection step can be significantly reduced to O(Md). The second step of our

algorithm is the clustering step. This is a standard k-means algorithm operated on

d-dimensional features, which consumes a computational complexity of O(NKd). As a
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consequence, the total computational complexity is O(Md+NKd). As a comparison,

the computational complexity for spectral clustering is O(N2K +NK2), which could

be much higher than that of the proposed method.

2.2. Strong Consistency for SBM

As we discussed previously, the proposed random projection method is simple and

computationally efficient. However, its statistical properties remain unknown. To

address this important question, we next study its theoretical properties under an

appropriately assumed model structure. Here, we focus on the arguably most popular

model for community detection, that is, the stochastic block model (SBM) studied by

Holland et al. (1983). Specifically, we assume an SBM with a total of K communities.

We use Ci ∈ {1, 2, , ..., K} as the community membership of the i-th node. Write

P (aij = 1) = pij and P = (pij) ∈ RN×N . The SBM assumes that pij = bCi,Cj
, where

B = (bkl) ∈ RK×K is a K × K symmetric matrix with each entry bkl ∈ [0, 1] for

1 ≤ k, l ≤ K. It can be verified that P = GBG⊤, where G = (G⊤
1 , ..., G

⊤
N) ∈ RN×K is a

membership matrix with Gik = 1 if node i belongs to the k-th community and Gik = 0

otherwise. To establish the consistency result of the proposed method, we present a

number of important technical conditions as follows.

(A1) (Community Size) Let n = N/K; then, there exist two positive constants

0 < c
(1)
min < c

(1)
max such that the community sizes satisfy c

(1)
minn ≤ mink Nk ≤

maxk Nk ≤ c
(1)
maxn.

(A2) (Connecting Probability) There exist two positive constants 0 < c
(2)
min <

c
(2)
max, such that c

(2)
minθn ≤ mink bkk ≤ maxk bkk ≤ c

(2)
maxθn, where nθn ≫ logN as

n → ∞. Furthermore, we assume that
∑

l ̸=k bkl ≪ bkk as n → ∞ for k = 1, ..., K.
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The first condition requires different community sizes to be of the same order.

This is a standard assumption that has typically been assumed in literature; see, for

example, Gao et al. (2018) and Hu et al. (2020). This condition enables the subsequent

theoretical development to be relatively easier. The second condition defines the key

characteristic of a community. That is, the nodes belonging to the same community

should be connected with higher probability than nodes from different communities.

We then study the separability of the projected vectors. Ideally, we wish different

nodes to be well separated from each other by their projected vectors according to their

community membership. Specifically, recall that Zi ∈ Rd is the projected vector from

the ith node. Then, nodes from different communities naturally form different groups

in terms of Zi. For each community, we can then compute its community center as

α̂k = N−1
k

∑
Cj=k Zj for 1 ≤ k ≤ K. Next, we can compute the distance between Zi

and every possible group center as δi,k = ∥Zi − α̂k∥2. Obviously, we wish the node

of interest to stay closer to the community center to which it belongs, compared with

other community centers, that is, δi,Ci
< min δi,k for k ̸= Ci and 1 ≤ i ≤ N . That

enables us to consider an event set E = {maxi,k:Ci=k δi,k < mini,k:Ci ̸=k δi,k}. It is then

of great interest to ask how likely this desirable situation is.

As one can expect, this is a very challenging task. We attempt to address this

problem in several steps. In the first step, we study the mean and variance of δi,k

according to different scenarios. Next, we combine all those preliminary but important

findings to form powerful non-asymptotic results to quantify the likelihood of the event

of interest E . We start by analyzing E(δi,k) first. For the simplicity of notations, we

assume that Ci = k while the target community changes to k′ in the following two

propositions.

Proposition 1. Suppose assumptions (A1) and (A2) hold. For a pre-specified dimen-
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sion d, suppose that X = (Xij) ∈ RN×d with each entry following a standard normal

distribution N(0, 1) independently for 1 ≤ i ≤ N, 1 ≤ j ≤ d. For arbitrary node i with

Ci = k, we have

E(δi,k′) =

 dNkbkk − dNkb
2
kk + o(dnθ2n) k′ = k,

dNkbkk + dNk′b
2
k′,k′ + o(dnθ2n) k′ ̸= k.

(2.1)

By Proposition 1, we find that for arbitrary node i, the expected distance between

the projected vector and its own community center is naturally smaller than that from

other communities. Specifically, when k ̸= k′, the expectation of δi,k′ shares a common

term (i.e. dNkbkk) compared with the case when k = k′. More importantly, these two

expectations have a difference of term dNkb
2
kk+dNk′b

2
k′,k′ , which is not only determined

by community k (i.e., Ci) but also by community k′. This explains why clustering

performance could be poor when community sizes are unbalanced or the network has

sparse connections. Furthermore, we find that the dimension d plays an important role

in (2.1). It enlarges the gap between δi,k′s, which gives us better chances to cluster

nodes correctly. However, our numerical experiments suggest that a larger projection

dimension d also leads to greater variability for the projected positions. Then, whether

the gap increase in the mean due to the projection dimension can be offset by the

increased variability becomes a critical issue. This inspires the following proposition.

Proposition 2. Suppose the assumptions in Proposition 1 holds. We then have

var(δi,k′) =

 dN2
k b

2
kk + d2Nkbkk + o (d2nθn + dn2θ2n) k′ = k,

dN2
k b

2
kk + d2Nkbkk + o (d2nθn + dn2θ2n) k′ ̸= k.

By Proposition 2, we find that the variability of the projected vectors increases

towards infinity as n → ∞ or d → ∞. A closer look reveals that its leading term is
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of order O(d2nθn + dn2θ2n) under previous assumptions. This means that the standard

deviation of the projected vector is approximately O(nθn
√
d+d

√
nθn). Recall that the

expected distance gap is of order O(dnθ2n), which can dominate the standard deviation

when d and n are large. As a consequence, as long as computational resources support

it, the projection dimension d should be as large as possible. This is an interesting

phenomenon to be numerically demonstrated in the next section. With the help of the

previous two propositions, we are then able to establish the following strong consistency

results for the community separability result.

Theorem 1. (Strong Separability) Suppose assumptions in Proposition 1 hold.

Then, we have P (E) ≥ 1−2 exp (−Cmin {nθn, dθ2n}+ logK + logN), where C is some

positive constant.

In order to achieve the strong consistency of the proposed algorithm, we need

P (E) → 1. Through Theorem 1, we can easily find that the driving factor for P (E) → 1

is the term min{nθn, dθ2n}. Then it is of great interest to investigate nθn and dθ2n re-

spectively. First, consider that d is sufficiently large so that min{nθn, dθ2n} = nθn. One

can find that the separability of the projected vectors is limited by the network itself

and cannot be further improved by increasing the projection dimension d. Specifically,

we require nθn ≫ logN to ensure P (E) → 1 as N → ∞. This leads to the sig-

nal strength θn ≫ logN/n (as assumed in assumption (A2)), otherwise the proposed

method can never achieve strong consistency. Next, we turn to discuss the case that

min{nθn, dθ2n} = dθ2n. If the signal strength θn = O(1), that is, it does not diminish

as N → ∞. Then we only need the projection dimension d ≫ logN , which can be

a mild condition in practice. When the signal strength θn diminishes as N → ∞, to

ensure strong consistency we need d ≫ logN/θ2n. We consider two special cases. First,

suppose that the signal strength is as weak as θn = logN/n. Then we can verify that
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the projection dimension d should satisfies d ≫ n2/ logN . This can be computation-

ally expensive when the network size N is large. Second, suppose that the maximum

tolerated projection dimension d satisfies d = c0N for some positive constant c0. Then

we can verify that the smallest signal strength to ensure strong consistency should be

θn ≫
√

logN/N . This is a stronger assumption compared with the well known strong

consistency results for SBM, that is, θn ≥ c logN/N for some constant c > 0 (Zhao

et al., 2012; Su et al., 2017). These two cases imply that when the network becomes

sparse, the projected dimension d should be large. This is the price paid for introduc-

ing additional noise. In next section we verify our theoretical findings by conducting a

number of numerical studies.

3. NUMERICAL STUDIES

3.1. Simulation Studies

In this subsection, we conduct a number of simulation studies to evaluate the finite

sample performance of our proposed random projection method. We set the connectiv-

ity probability matrix as B = q1K1
⊤
K +(p− q)IK , where p and q denote the connecting

probability between two nodes belonging to the same community and different com-

munities, respectively. This is the standard setting of an SBM with four parameters

studied by Rohe et al. (2010). Various specification combinations of (N,K, n, d) are

studied. For each specification, we randomly repeat the experiment for T = 100 times.

To evaluate the performance of our proposed method, we consider two clustering per-

formance metrics. The first one is the mis-clustered rate (MCR), which is defined

as

MCR(Ĉ, C) =
∑N

i=1 I(Ĉi ̸= Ci)

N
.
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Here C = {C1, .., CN} are the ground truth labels and Ĉ = {Ĉ1, ..., ĈN} are the pre-

dicted labels under permutations. As one can see, the smaller the MCR value, the

better the clustering result is. The MCR metric is widely used in many community

detection studies under SBM, see for example Rohe et al. (2010); Abbe (2018); Gao

et al. (2018). The second one is the adjusted rand index (ARI), which is a well known

metric for assessing the clustering performance (Lawrence and Phipps, 1985). The

ARI metric takes value in [−1, 1] and the closer that ARI value to 1, the better the

clustering result is. We remark that the ARI can be well defined when the K is not

equal to the true cluster number.

We investigate the parameter effects (i.e., K, n and d) of the proposed method

in the first two studies. Subsequently, we compare the proposed algorithm with three

existing community detection methods and show its computational advance in the third

study. Finally, we provide an eigenvalue ratio criterion to select K in the fourth study.

3.2. Effect of Community Number K and Community Size n

In our first study, we set p = 0.5, q = 0.05 and fix d = 100. We consider two

situations: (i) fix community size n = 100 and let K vary from 10 to 90; (ii) fix

community number K = 10 and let community size n vary from 100 to 900. The

detailed results are given in Figure 1. By the left two panels of Figure 1, we find

that the clustering performances become worse and worse as the community number

K grows for fixed d and n. By the right two panels, we find that the clustering

performance become better and better as the community size n grows when we fix the

community size K. These results match the claims in Theorem 1.

3.3. Effect of Projection Dimension d
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Figure 1: The left two panels, from the top to the bottom, show the MCR and ARI
change as the community number K varies from 10 to 90 with a fixed community size
n = 100, respectively. The right two panels, from the top to the bottom, show the
MCR and ARI change as the community size n varies from 100 to 900 with a fixed
community number K = 10, respectively.

Our second study focuses on the choice of random project dimension d. To this end, we

consider the cases that networks are dense and sparse, respectively. In the first case, we

consider a dense network with connecting probability p = 0.2, q = 0.01. We choose the

random projection dimension dN = (logN)2, which satisfies dN ≫ logN . In the second

case, we consider a sparse network with connecting probability pN = logN
√
logN/N

and qN = logN/N , which satisfies θn ≫
√

logN/N . As a consequence, the connecting

probability diminishes as N increases for the sparse network case. Then we choose the

random projection dimension dN = 0.1N . For both two cases, we fix the community

number K = 5 and let the network size N vary from 1000 to 10000. The detailed results

are shown in Figure 2. Similar pattern can be observed in Figure 2, the clustering
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performances in both cases imply strong consistency as N → ∞. Furthermore, the

choice of dN in case one and the choice of θn in case two match the claims and discussions

in Theorem 1.
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Figure 2: The left panel shows the MCR changes of two cases as network size N varies
from 1000 to 10000 with fixed community number K = 5; The right panel shows the
ARI changes of two cases as network size N varies from 1000 to 10000 with fixed
community number K = 5.

3.4. Comparison with Existing Methods

Our third study concerns about the comparison experiments with several existing

methods. Specifically, we consider the Newman-Girvan modularity method (Newman

and Girvan, 2004), the method of latent position cluster model (Handcock et al., 2007)

and the spectral cluster method (Luxburg, 2007). The Newman-Girvan modularity

method (NG) is implemented by the function cluster_edge_betweenness in R package

igraph†. The latent position cluster model (LPCM) is implemented via R package

latentnet‡ , which is provided by Handcock et al. (2007). We consider the Euclidean

distance in a five dimensional latent space and set the burnin = 20, 000. Moreover, the
†https://cran.r-project.org/web/packages/igraph/index.html.
‡https://sites.stat.washington.edu/raftery/Research/latentnet.html.
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spectral clustering (SC) method is implemented by the R package RSpectra§, which is

designed for large-scale eigenvalue decomposition. As for the network settings, we set

p = 0.5, q = 0.2, fix the number of community K = 3, and let the community size n

vary from 10 to 1000. For the proposed random projection method, we fix d = 200

for experiments with K = 2 and d = 300 for experiments with K = 5. The clustering

performances are evaluated by the mean mis-clustered rate (MCR), adjusted rand index

(ARI) and CPU time (in seconds). Note that the NG method does not take a pre-

specified clustering number, therefore the cluster number K might be over-estimated

(or under-estimated). Thus we omit the MCR value for the NG method since it is not

well defined in this case. We further omit the results that need CPU time more that

600 seconds.

Table 1: Comparisons of four community detection methods. The reported CPU time
results are multiplied by 10 and those more than 600 seconds are represented by ′−′.

RP NG LPCM SC

K n MCR ARI Time MCR ARI Time MCR ARI Time MCR ARI Time

2

10 0.303 0.188 0.005 − 0.354 0.020 0.290 0.353 119.6 0.390 0.091 0.007

20 0.075 0.716 0.007 − 0.566 0.324 0.020 0.920 339.1 0.040 0.845 0.010

50 0.017 0.934 0.023 − 0.941 25.64 0.004 0.984 2303 0.006 0.975 0.021

100 0.004 0.984 0.044 − 0.998 872.7 − − − 0 1 0.110

200 0.002 0.994 0.132 − − − − − − 0 1 0.635

500 0.001 0.997 0.908 − − − − − − 0 1 9.528

5

10 0.584 0.081 0.009 − 0.129 0.706 0.540 0.173 2022.0 0.600 0.083 0.011

20 0.469 0.231 0.022 − 0.079 15.03 − − − 0.390 0.845 0.033

50 0.047 0.887 0.069 − 0.065 1356 − − − 0.011 0.975 0.210

100 0.011 0.972 0.192 − − − − − − 0.005 0.996 1.288

200 0.002 0.994 0.387 − − − − − − 0.001 0.999 10.96

500 0.001 0.998 2.210 − − − − − − 0 1 235.1

According to the results in Table 1, we can draw the following conclusions. First,
§https://cran.r-project.org/web/packages/RSpectra/vignettes/introduction.html.
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almost all the methods have better clustering accuracy when community size n di-

verges with a fixed community number K. The only exceptional case occurs for the

Newman-Girvan modularity method when K = 5. This is because the NG method

tends to over-estimate the cluster number and thus introducing extra clustering in-

stability. Second, compared to other methods, the proposed RP method is obviously

more computationally efficient with comparable clustering accuracy. This advantage

increases as the network size becomes larger. For instance, when K = 5 and n = 500,

the RP method consumes 0.2 seconds while SC method consumes 23.5 seconds, which

is 100 times larger than the RP methods. Moreover, both NG and LPCM methods are

not able to produce the result within 600 seconds under this circumstance.

3.5. Selection of Community Number K

For the last simulation study, we try to evaluate the empirical performance of an

intuitive and simple method for estimating the community number K. There exists

rich literature for estimating community number K; see, for example, Jing (2014),

Bickel and Sarkar (2016), Le and Levina (2015) Li et al. (2020), Hu et al. (2020). In

addition to these works, we apply a simple method of the maximum eigenvalue ratio

criterion. Recall that probability matrix P is of rank K under the SBM setting; we

should expect matrix E = X⊤A⊤AX/(Nd) ∈ Rd(K < d ≪ N) to have a K large top

eigenvalue, while the rest are comparatively small. Specifically, let λ̂1 ≥ λ̂1 · · · ≥ λ̂d ≥ 0

be the eigenvalues of matrix E. Thus, if we define an eigenvalue ratio criterion as

wk = λ̂k/λ̂k+1 for 1 ≤ k ≤ d− 1, we should expect wk to reach its maximum at k = K.

As a result, we choose the estimated community number K̂ as K̂ = argmaxk wk. We

set p = 0.2, q = 0.01 and n = N/K = 1000. To evaluate the numerical performance of

this maximum eigenvalue ratio criterion, we set K = 5, 10, 20 and let d vary from 10
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to 100 to investigate the effective dimension d. The results are summarized in Table 2,

and Figure 3 gives a visualized illustration of the maximum eigenvalue ratio criterion.

Table 2: Accuracy of the estimation of K based on the maximum eigenvalue ratio
criterion under different (K, d) specification combinations when fixing n = 1000.

K
d 5 10 20 50 75 100

3 10% 54% 96% 100% 100% 100%
5 - 2% 88% 100% 100% 100%
10 - - 2% 100% 100% 100%
20 - - - 18% 94% 96%
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Figure 3: The left panel shows the eigenvalue of matrix E = X⊤A⊤AX/(Nd) (of one
replicate) in descending order, and the red vertical line shows the true value of K. The
right panel shows the eigenvalue ratio of matrix E, and the red vertical line shows the
true value of K.

3.6. Real Data Examples

In this subsection, we consider two real-world network datasets to illustrate the

accuracy and computational efficiency of our method. The first is the political blog

network collected by Adamic and Glance (2005). The network consists of 1,490 blogs

18



about US politics where the edges refer to web links. All blogs are labeled with 0 for

liberal and 1 for conservative. This leads to two ground truth communities. However,

straightforward community detection leads to poor clustering performance due to the

imbalance and sparsity of the network. To this end, we only use the largest connected

subnetwork, which contains 1,222 nodes with community sizes 586 and 636 for liberal

and conservative, respectively. We applied our random projection method and the

classic spectral clustering method to these network data. Figure 4 shows the clustering

results of 200 nodes with in-degrees no less than 30. We find that the performance of

the random projection method is comparable with that of the classic spectral clustering

method but with lower computation time. Specifically, the spectral clustering method

requires 0.5616 s to complete the task, while the random projection method (with

d = 50) only takes 0.2695 s to achieve the same clustering accuracy.

(a) Ground Truth (b) Random Projection (c) Spectral Clustering

Figure 4: Clustering results of the top 200 nodes with in-degrees larger than 30 from the
political blogs dataset via (b) random projection (d = 100) and (c) spectral clustering
compared with (a) ground truth.

The second real-world network dataset is the Sina Weibo network data. The dataset

is collected from Sina Weibo (www.weibo.com), which is arguably the largest Twitter-

type social media platform in China (Huang et al., 2016). After the basic data cleaning

procedure, we keep N = 1, 153 nodes with in-degrees larger than 30. The number of
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edges is M = 68, 109.

We then apply our random projection method to this network with d = 100.

The eigenvalue ratio criterion suggests K = 6 as the number of communities. The

clustering results can be found in the left panel of Figure 5. The within-community

density is n−1
1

∑
i,j aijI(Ĉi = Ĉj) = 0.1529, and the between-community density is

n−1
2

∑
i,j aijI(Ĉi ̸= Ĉj) = 0.01891, where n1 =

∑
k Nk(Nk − 1) and n2 = N(N − 1) −∑

k Nk(Nk − 1).

Figure 5: Clustering results of the Sina Weibo dataset via the random projection
method with K = 6. Different colors represent different communities, and point sizes
represent the degree of nodes.

To explore the information behind the community detection result, we further il-

lustrate the clustering result with several nodal covariates. Specifically, the dataset

contains five covariates of the Weibo users. These covariates are bi-follower count,

status count, follower count, friend count and favorite count. We calculate the mean
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value of each covariate within all six communities, as shown in the radar plot in Figure

6. The distributions of covariates are quite different across different communities. This

reveals that our community detection result is informative and helpful for further ex-

plorations. Furthermore, this implies that the covariate information may further help

community detection, and we discuss it as a future study topic in the next section.

Bi_followers

Statuses

Followers

Friends

Favourites

0.00.20.40.60.81.0

Cluster_1
Cluster_2
Cluster_3
Cluster_4
Cluster_5
Cluster_6

Figure 6: Radar plot of the mean value of each attribute within all K = 6 communities.
The scale of each attribute is normalized to [0, 1] by the maximum and minimum.

4. CONCLUSIONS

In this paper, we propose a simple random projection method for large-scale network

community detection. The basic idea is to generate a number of random directions in

an N -dimensional Euclidean space. Each row of the adjacency matrix is then projected

onto these directions. Therefore, their positions in a low-dimensional projected space

can be computed. Subsequently, k-means can be applied to these random projections to

determine the community structure. Furthermore, we adopt a simple eigenvalue ratio
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criterion on the random projections so that the community number can be determined

automatically. Our proposed method has the following advantages. First, it is simple,

feasible and computationally cheap for large-scale network data. Second, our method

preserves privacy with the help of random projection. We do not need to actually

obtain the adjacency matrix A once the random projections are calculated. Third, our

random projection method is naturally suitable for parallel computing, which makes it

more flexible to deal with large-scale network data or widely distributed stored network

data.

To conclude this work, we will discuss several interesting directions for future study.

First, the statistical properties of our proposed method are studied under standard

SBM. As an algorithm-based method, it will be of great interest to study its theoretical

properties under other network structures, including degree-corrected SBM and latent

space model. Second, the random projection we used in this work is a standard normal

random matrix. How the covariance matrix influences the result remains unknown.

Furthermore, we can use a random projection matrix with other distributions. For

instance, when we use the Bernoulli variables to form a projection matrix, the random

projection becomes a subsampling result. This may unify all these methods under

the random projection framework. Finally, our method is naturally suited for parallel

computing, and will be of great interest to develop a corresponding method for parallel

or distributed community detection methods.
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APPENDIX A

Appendix A.1: Proof of Proposition 1

Define Ωi,k′ = (Ai−N−1
k′
∑

Cj=k′ Aj)(Ai−N−1
k′
∑

Cj=k′ Aj)
⊤, where A⊤

i = (ai1, ..., aiN)

denotes the i-th row of adjacency matrix A. Note that Zi = X⊤Ai, we then have

δi,k′ = ∥Zi − α̂k′∥2 = tr(X⊤Ωi,k′X) =
∑d

s=1 X
⊤
s Ωi,k′Xs. Then we have

E(δi,k′) = E

(
d∑

s=1

X⊤
s Ωi,k′Xs

)
=

d∑
s=1

E

{
E

(
X⊤

s Ωi,k′Xs

∣∣∣∣A)} = dE{tr(Ωi,k′)}

Then it suffices to calculate E{tr(Ωi,k′)}, we will consider two cases as k′ = k and

k′ ̸= k, respectively.

Case 1: k′ = k

Under this case, we know that i ∈ {j : Cj = k′}, thus we have

tr(Ωi,k′) =
N∑
t=1

ait −N−1
k

∑
j:Cj=k

ajt

2

=
1

N2
k

N∑
t=1

 ∑
j:Cj=k,j ̸=i

(ait − ajt)


2

=
1

N2
k

N∑
t=1


∑

j:Cj=k,j ̸=i

(ait − ajt)
2 +

∑
j,r:Cj=k,Cr=k
j ̸=r,j ̸=i,r ̸=i

(ait − aitart − aitajt + artajt)


It can be carefully verified that E(ait − ajt)

2 = 2bkl(1− bkl) when Ct = l. Similarly, we

have E(ait − aitart − aitajt + artajt) = bkl(1− bkl) when Ct = l. As a result, we have

E[tr(Ωi,k′)] =
Nk − 1

Nk

K∑
l=1

Nlbkl(1− bkl) = Nkbkk(1− bkk) +O

(∑
l ̸=k

Nlbkl

)
(A.1)
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Case 2: k′ ̸= k

Under this case, we know that i /∈ {j : Cj = k′}, thus we have

tr(Ωi,k′) =
N∑
t=1

ait −N−1
k′

∑
j:Cj=k

ajt

2

=
1

N2
k′

N∑
t=1

 ∑
j:Cj=k′

(ait − ajt)


2

=
1

N2
k′

N∑
t=1


∑

j:Cj=k′

(ait − ajt)
2 +

∑
j,r:j ̸=r

Cj=k′,Cr=k′

(ait − aitart − aitajt + artajt)


We can calculate that E(ait − ajt)

2 = E(ait − 2aitajt + ajt) = bkl(1− bk′l) + bk′l(1− bkl)

when Ct = l. Simiarly, we have E(ait−aitart−aitajt+artajt) = bkl(1−bk′l)
2+b2k′l(1−bkl)

when Ct = l. Then we have

E[tr(Ωi,k′)] =
1

N2
k′

N∑
t=1


∑

j:Cj=k′

E(ait − ajt)
2 +

∑
j,r:j ̸=r

Cj=k′,Cr=k′

(ait − aitart − aitajt + artajt)


=

1

N2
k′

K∑
l=1

∑
Ct=l


∑

j:Cj=k′

E(ait − ajt)
2 +

∑
j,r:j ̸=r

Cj=k′,Cr=k′

(ait − aitart − aitajt + artajt)


=

K∑
l=1

∑
Ct=l

{
1

Nk′
[bkl(1− bk′l) + bk′l(1− bkl)] +

Nk′ − 1

Nk′
[bkl(1− bk′l)

2 + b2k′l(1− bkl)]

}

=
K∑
l=1

{
Nl

Nk′
[bkl(1− bk′l) + bk′l(1− bkl)] +

Nk′ − 1

Nk′
Nl[bkl(1− bk′l)

2 + b2k′l(1− bkl)]

}

=
K∑
l=1

{
Nl[bkl(1− bk′l)

2 + b2k′l(1− bkl)]
}
+

K∑
l=1

{
Nl

Nk′
bk′l(1− bk′l)

}

= Nkbkk +Nk′b
2
k′,k′ +O

(∑
l ̸=k

Nlbkl

)
(A.2)

Furthermore, we can calculate that the difference between E(δi,k′)s for i ∈ {j : Cj = k′}

and i /∈ {j : Cj = k′} is Nkb
2
kk +Nk′b

2
k′,k′ +O(

∑
l ̸=k Nlb

2
kl).
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Appendix A.2: Proof of Proposition 2

Recall that δi,k′ = ∥Zi − α̂k′∥2 = tr(X⊤Ωi,k′X) =
∑d

s=1 X
⊤
s Ωi,k′Xs. Conditional on

A, we can verify that X⊤
s Ωi,k′Xs ∼ tr(Ωi,k′)χ

2(1) for s = 1, 2, ..., d. Note that X1, ..., Xd

are independent, we have
∑d

s=1 X
⊤
s Ωi,k′Xs ∼ tr(Ωi,k′)χ

2(d). Then we have

var(δi,k′) = var

(
d∑

s=1

X⊤
s Ωi,k′Xs

)

= E

{
var

(
d∑

s=1

X⊤
s Ωi,k′Xs

∣∣∣∣A
)}

+ var

{
E

(
d∑

s=1

X⊤
s Ωi,k′Xs

∣∣∣∣A
)}

= 2dE{tr2(Ωi,k′)}+ d2 var{tr(Ωi,k′)}

Then it suffices to calculate E{tr2(Ωi,k′)} and var{tr(Ωi,k′)}. We first consider E{tr2(Ωi,k′)}.

tr2(Ωi,k′) =


N∑
t=1

ait −N−1
k′

∑
j:Cj=k′

ajt

2
2

(A.3)

=
N∑
t=1

ait −N−1
k′

∑
j:Cj=k′

ajt

4

+
N∑
s=1

∑
t ̸=s

ait −N−1
k′

∑
j:Cj=k′

ajt

2ais −N−1
k′

∑
j:Cj=k′

ajs

2

,

We then discuss the above two parts respectively.

Case 1: k′ = k
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Under this case, we know that i ∈ {j : Cj = k′}, then we have

E

ait −N−1
k

∑
j:Cj=k

ajt

4

=
1

N4
k

E


∑

j:Cj=k,j ̸=i

(ait − ajt)
4 +

∑
j,r:Cj=Cr=k
j ̸=r,j ̸=i,j ̸=i

(ait − ajt)
3(ait − art)

+
∑

j,r:Cj=Cr=k
j ̸=r,j ̸=i,j ̸=i

(ait − ajt)
2(ait − art)

2 +
∑

j,r,m:Cj=Cr=Cm=k
j ̸=r ̸=m,j ̸=i,j ̸=i,m ̸=i

(ait − ajt)
2(ait − art)(ait − amt)

+
∑

j,r,m,o:Cj=Cr=Cm=Co=k
j ̸=r ̸=m ̸=o,j ̸=i,j ̸=i,m ̸=i,o ̸=i

(ait − ajt)(ait − art)(ait − amt)(ait − aot)



=
1

N4
k

{(Nk − 1)∆1t + 4(Nk − 1)(Nk − 2)∆2t + 3(Nk − 1)(Nk − 2)∆3t

+6(Nk − 1)(Nk − 2)(Nk − 3)∆4t + (Nk − 1)(Nk − 2)(Nk − 3)(Nk − 4)∆5t} ,

where ∆1t = E(ait − ajt)
4,∆2t = E{(ait − ajt)

3(ait − art)},∆3t = E{(ait − ajt)
2(ait −

art)
2},∆4t = E{(ait − ajt)

2(ait − art)(ait − amt)},∆5t = E{(ait − ajt)(ait − art)(ait −

amt)(ait − aot)}. It can be calculated that ∆1t = 2bkl(1− bkl), ∆2t = bkl(1− bkl), ∆3t =

bkl(1−bkl)
2+b2kl(1−bkl), ∆4t = bkl(1−bkl)

3+b3kl(1−bkl) and ∆5t = bkl(1−bkl)
4+b4kl(1−bkl)

when Ct = l. Combine the results above, we have

E

ait −N−1
k

∑
j:Cj=k

ajt

4

= bkl(1− bkl)
4 + b4kl(1− bkl) +O

(
bkl
Nk

)
= bkl +O

(
b2kl +

bkl
Nk

)

Then we have

N∑
t=1

E

ait −N−1
k

∑
j:Cj=k

ajt

4

= Nkbkk +O(Nkb
2
kk + bkk +

∑
l ̸=k

Nlbkl)

On the other hand, the second term in equation (A.3) is the summation of (ait −
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N−1
k

∑
j:Cj=k ajt)

2, whose expectation has been studied in (A.1) for Ci = k = k′. Recall

that E(ait −N−1
k

∑
j:Cj=k ajt)

2 = [(Nk − 1)/Nk]bkl(1 − bkl) when Ct = l. We then can

calculate that

E


N∑
t=1

∑
t ̸=s

ait −N−1
k

∑
j:Cj=k

ajt

2ais −N−1
k

∑
j:Cj=k

ajs

2
=


N∑
t=1

E

ait −N−1
k

∑
j:Cj=k

ajt

2
2

−
N∑
t=1

E

ait −N−1
k

∑
j:Cj=k

ajt

2
2

=

(
Nk − 1

Nk

)2
{

K∑
l=1

Nlbkl(1− bkl)

}2

−
(
Nk − 1

Nk

)2 K∑
l=1

Nlb
2
kl(1− bkl)

2

Combine all the results above, we have

E{tr2(Ωi,k′)} = E


N∑
t=1

ait −N−1
k

∑
Cj=k

ajt

2
2

=
N∑
t=1

E

ait −N−1
k

∑
j:Cj=k

ajt

4

+
N∑
t=1

∑
t ̸=s

E

ait −N−1
k

∑
j:Cj=k

ajt

2

E

ais −N−1
k

∑
j:Cj=k

ajs

2

=
K∑
l=1

Nl[bkl +O(b2kl)] +

(
Nk − 1

Nk

)2
{

K∑
l=1

Nlbkl(1− bkl)

}2

−
(
Nk − 1

Nk

)2 K∑
l=1

Nlb
2
kl(1− bkl)

2

= N2
k b

2
kk +O

(
Nkbkk +

∑
l ̸=k

N2
l b

2
kl

)
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The variance can be calculated subsequently as

var{tr(Ωi,k′)} = E{tr2(Ωi,k′)} − E{tr(Ωi,k′)}2

=
N∑
t=1

E

ait −N−1
k

∑
j:Cj=k

ajt

4

−
N∑
t=1

E

ait −N−1
k

∑
j:Cj=k

ajt

2
2

=
K∑
l=1

Nl[bkl +O(b2kl)]−
(
Nk − 1

Nk

)2 K∑
l=1

Nlb
2
kl(1− bkl)

2

= Nkbkk +O

(
Nkb

2
kk +

∑
l ̸=k

Nlbkl

)
(A.4)
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Case 2: k′ ̸= k

Under this case, we know that i /∈ {j : Cj = k′}, then we have

E

ait −N−1
k′

∑
j:Cj=k′

ajt

4

=
1

N4
k′
E


∑

j:Cj=k′

(ait − ajt)
4 +

∑
j,r:j ̸=r

Cj=Cr=k′

(ait − ajt)
3(ait − art)

+
∑

j,r:j ̸=r
Cj=Cr=k′

(ait − ajt)
2(ait − art)

2 +
∑

j,r,m:j ̸=r ̸=m
Cj=Cr=Cm=k′

(ait − ajt)
2(ait − art)(ait − amt)

+
∑

j,r,m,o:j ̸=r ̸=m ̸=o
Cj=Cr=Cm=Co=k′

(ait − ajt)(ait − art)(ait − amt)(ait − aot)


=

1

N4
k′
{Nk′∆1t + 3Nk′(Nk′ − 1)∆2t + 4Nk′(Nk′ − 1)∆3t

+ 6Nk′(Nk′ − 1)(Nk′ − 2)∆4t +Nk′(Nk′ − 1)(Nk′ − 2)(Nk′ − 3)∆5t} ,

where ∆1t,∆2t, ...,∆5t are defined same as the case for k′ = k. It can be calculated that

∆1t = bkl(1− bk′l)+ bk′l(1− bkl), ∆2t = bkl(1− bk′l)
2+ b2k′l(1− bkl), ∆3t = bkl(1− bk′l)

2+

b2k′l(1 − bkl), ∆4t = bkl(1 − bk′l)
3 + b3k′l(1 − bkl) and ∆5t = bkl(1 − bk′l)

4 + b4k′l(1 − bkl).

Combine the results above, we have

E

Ait −N−1
k′

∑
Cj=k′

Ajt

4

=
1

N4
k′
{Nk′∆1t + 3Nk′(Nk′ − 1)∆2t + 4Nk′(Nk′ − 1)∆3t

+ 6Nk′(Nk′ − 1)(Nk′ − 2)∆4t +Nk′(Nk′ − 1)(Nk′ − 2)(Nk′ − 3)∆5t}

= bkl(1− bk′l)
4 + b4k′l(1− bkl) +O

(
bkl
Nk

)
= bkl +O

(
b4k′l +

bkl
Nk′

)
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Then we have

N∑
t=1

E

ait −N−1
k′

∑
j:Cj=k′

ajt

4

= Nkbkk +O

(
Nk′b

4
k′,k′ + bkk +

∑
l ̸=k

Nlbkl

)

Similarly, according to (A.2) Appendix A.1 we have E(ait −N−1
k′
∑

j:Cj=k′ ajt)
2 =

{Nl[bkl(1− bk′l)
2 + b2k′l(1− bkl)]}+O(bk′l) when Ct = l. We then can calculate that

E


N∑
t=1

∑
s ̸=t

ait −N−1
k′

∑
j:Cj=k′

ajt

2ais −N−1
k′

∑
j:Cj=k′

ajs

2
=


N∑
t=1

E

ait −N−1
k′

∑
j:Cj=k′

ajt


2

−
N∑
t=1

E

ait −N−1
k′

∑
j:Cj=k′

ajt

2
2

=

{
K∑
l=1

{
Nl[bkl(1− bk′l)

2 + b2k′l(1− bkl)] + O(bk′l)
}}2

−
K∑
l=1

Nl[bkl(1− bk′l)
2 + b2k′l(1− bkl)]

2 +O

(∑
l ̸=k′

Nlbk′l

)

Combine all the results above, we have

E{tr2(Ωi,k′)} = E


N∑
t=1

ait −N−1
k′

∑
j:Cj=k′

ajt

2
2

=
N∑
t=1

E

ait −N−1
k′

∑
j:Cj=k′

ajt

4

+
N∑
t=1

∑
s ̸=t

E

ait −N−1
k′

∑
j:Cj=k′

ajt

2

E

ais −N−1
k′

∑
j:Cj=k′

ajs

2

= N2
k b

2
kk +O

(
Nkbkk +

K∑
l ̸=k

N2
l b

2
kl

)
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The variance can be calculated subsequently as

var{tr(Ωi,k′)} = E{tr2(Ωi,k′)} − E{tr(Ωi,k′)}2

=
N∑
t=1

E

ait −N−1
k′

∑
j:Cj=k′

ajt

4

−
N∑
t=1

E

ait −N−1
k′

∑
j:Cj=k′

ajt

2
2

= Nkbkk −
K∑
l=1

Nl[bkl(1− bk′l)
2 + b2k′l(1− bkl)]

2 +O(Nk′b
4
k′,k′ + bkk +

∑
l ̸=k

Nlbkl)

= Nkbkk +O

(
K∑
l=1

Nlb
2
kl

)

Appendix A.3: Proof of Theorem 1

We now focus on deriving lower bound for P (E). Recall that δi,k = ∥Zi − α̂k∥2 =∑d
s=1 X

⊤
s Ωi,kXs, where Ωi,k = (Ai − N−1

k

∑
j:Cj=k Aj)(Ai − N−1

k

∑
j:Cj=k Aj)

⊤. Define

event E0(η) = {maxi,k:Ci=k |δi,k−E(δi,k)| ≤ η} and E1(η) = {maxi,k:Ci ̸=k |δi,k−E(δi,k)| ≤

η}. Recall that the difference between the expectations of δi,k′ (Ci = k) for k′ = k

and k′ ̸= k is Nkb
2
kk + Nk′b

2
k′,k′ + O(

∑
l ̸=k Nlb

2
kl). If we pick a sufficiently small η =

(Nkb
2
kk +Nk′b

2
k′,k′)/2, then

P (E) ≥ P{E0(η) ∪ E1(η)} ≥ 1− P{Ec
0(η)} − P{Ec

1(η)}, (A.5)

For a given k ∈ {1, 2, .., K}, we further define E0(k, η) = {maxi:Ci=k |δi,k−E(δi,k)| ≤ η}

and E1(k, η) = {maxCi ̸=k |δi,k − E(δi,k)| ≤ η}. Then we have

P (Ec
0(η)) = P{∪K

k=1Ec
0(k, η)} ≤

K∑
k=1

P (Ec
0(k, η)), (A.6)

P (Ec
1(η)) = P{∪K

k=1Ec
1(k, η)} ≤

K∑
k=1

P (Ec
1(k, η)), (A.7)

Thus it suffices to show P{Ec
0(k, η)} and P{Ec

1(k, η)}, respectively. We derive P{Ec
0(k, η)}
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first and P{Ec
1(k, η)} can be obtained similarly.

Note that δi,k contains two parts of randomness, which are from the adjacency

matrix A and random projection matrix X, respectively. We define the event A =

{c1nθn ≤ | tr(Ωi,k)| ≤ c2nθn} and show the following two inequalities

P (Ac) ≤ 2 exp(−c3nθn), (A.8)

P
({∣∣∣δi,k − E(δi,k)

∣∣∣ > η
} ∣∣∣A,A) ≤ 2 exp

(
−c4dθ

2
n

)
, (A.9)

where c1, c2, c3 and c4 are some positive constants. Combine the results in (A.8) and

(A.9), we can derive that

P
(∣∣∣δi,k − E(δi,k)

∣∣∣ > η
)

= P
({∣∣∣δi,k − E(δi,k)

∣∣∣ > η
}
∩ A

)
+ P

({∣∣∣δi,k − E(δi,k)
∣∣∣ > η

}
∩ Ac

)
≤ 2 exp (−c3nθn) + 2 exp

(
−c4dθ

2
n

)

It yields,

P{Ec
0(k, η)} = P

(
max
Ci=k

|δi,k − E(δi,k)| > η

)
≤

∑
Ci=k

P (|δi,k − E(δi,k)| > η)

≤ 2Nk exp (−c3nθn) + 2Nk exp
(
−c4dθ

2
n

)
. (A.10)

In the following we derive (A.8) and (A.9) in the following two parts and then state

the result for P{Ec
0(k, η)}.

1. Derivation of (A.8)

Note that tr(Ωi,k) can be represented into independent summations as tr(Ωi,k) =∑N
t=1 Wt, where Wt = (ait − N−1

k

∑
j:Cj=k ajt)

2 ≤ 1 for 1 ≤ t ≤ N are bounded and
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independent with each others. Then by Bernstein’s inequality, we have

P {| tr(Ωi,k)− E[tr(Ωi,k)]| > ϵ} ≤ 2 exp

(
− ϵ2/2

var[tr(Ωi,k)] + ϵ/3

)
(A.11)

Recall that the leading term of E[tr(Ωi,k)] and var[tr(Ωi,k)] are both Nkbkk by (A.2)

and (A.4), which is of order O(nθn) by assumptions. By choosing appropriate ϵ of

order O(nθn), we know that there exists three positive constant c1, c2 and c3 such that

P
{
c1nθn ≤

∣∣∣ tr(Ωi,k)
∣∣∣ ≤ c2nθn

}
≥ 1− 2 exp (−c3nθn) (A.12)

Let A =
{
c1nθn ≤

∣∣∣ tr(Ωi,k)
∣∣∣ ≤ c2nθn

}
, then (A.12) leads to (A.8).

2. Derivation of (A.9)

Conditional on A and adjacency matrix A, Ωi,k can be rewritten into a spectral

decomposition form as Ωi,k = tr(Ωi,k)uiu
⊤
i , where ∥ui∥ = 1. Then we have X⊤

s Ωi,kXs =

tr(Ωi,k)(X
⊤
s ui)

2 ∼ tr(Ωi,k)χ
2(1). Let Ys = (nθn)

−1 tr(Ωi,k)(X
⊤
s ui)

2 and then δi,k =

nθn
∑d

s=1 Ys. We can verify that

E(|Y l
s ||A, A) = {tr(Ωi,k)/(nθn)}l(2l − 1)!! ≤ 2{tr(Ωi,k)/(nθn)}2 (2c2)l−2 l!

Therefore, given A and A, by Bernstein’s inequality (Wainwright, 2019) we have for

ϵ > 0

P

({∣∣∣ d∑
k=1

Ys − E

d∑
s=1

Ys

∣∣∣ > ϵ

nθn

})
≤ 2 exp

{
− ϵ2

2n2ϵ2n
∑d

s=1 var(Ys|A, A) + c2nθnϵ

}

≤ 2 exp

{
− ϵ2

4dn2θ2nc
2
2 + 2c2nθnϵ

}
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Choose ϵ = η = d(Nkb
2
kk +Nk′b

2
k′,k′)/2, then there exists a constant c4 such that

P
({∣∣∣δi,k − E(δi,k)

∣∣∣ > η
} ∣∣∣A,A) ≤ 2 exp

(
−c4dθ

2
n

)

As a result, we have

P (Ec
0(η)) ≤

K∑
k=1

P (Ec
0(k, η)) ≤ 2N exp (−c3nθn) + 2N exp

(
−c4dθ

2
n

)
(A.13)

The calculation of P (Ec
1) is similar. Recall that the leading term of E[tr(Ωi,k)] and

var[tr(Ωi,k)] are both Nk′bk′,k′ for Ci = k′ ̸= k, which is of order O(nθn). Following the

same argument as Ci = k, we can show

P
(∣∣∣δi,k − E(δi,k)

∣∣∣ > η
)
≤ 2 exp (−c3nθn) + 2 exp

(
−c4dθ

2
n

)
.

The details are omitted here due to the duplication. Then we can verify that

P{Ec
1(k, η)} = P

(
max
i:Ci ̸=k

|δi,k − E(δi,k)| > η

)
≤

∑
i:Ci ̸=k

P (|δi,k − E(δi,k)| > η)

≤ 2(N −Nk) exp (−c3nθn) + 2(N −Nk) exp
(
−c4dθ

2
n

)
(A.14)

As a result, we can derive

P (Ec
1(η)) ≤

K∑
k=1

P (Ec
1(k, η))

≤ 2(K − 1)N exp (−c3nθn) + 2(K − 1)N exp
(
−c4dθ

2
n

)
(A.15)
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Combine the results in inequality (A.13) and (A.15), then we have

P (E) ≥ P{E0(η) ∪ E1(η)} ≥ 1− P{Ec
0(η)} − P{Ec

1(η)}

≥ 1− 2 exp
(
−Cmin

{
nθn, dθ

2
n

}
+ logK + logN

)
,

for some positive constant C. This completes the proof of Theorem 1.
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