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Improved Näıve Bayes with Mislabeled Data
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Labeling mistakes are frequently encountered in real-
world applications. If not treated well, the labeling mis-
takes can deteriorate the classification performances of a
model seriously. To address this issue, we propose an im-
proved Näıve Bayes method for text classification. It is an-
alytically simple and free of subjective judgements on the
correct and incorrect labels. By specifying the generating
mechanism of incorrect labels, we optimize the correspond-
ing log-likelihood function iteratively by using an EM algo-
rithm. Our simulation and experiment results show that the
improved Näıve Bayes method greatly improves the perfor-
mances of the Näıve Bayes method with mislabeled data.

AMS 2000 subject classifications: Primary 62F15; sec-
ondary 62F35.
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tion, Label Noise, EM algorithm.

1. INTRODUCTION

In the recent decades, artificial intelligence (AI) has
fundamentally changed our work and life [7, 23, 34]. The
success of AI algorithms relies on millions or even billions of
labeled data [21]. In the field of automatic face recognition,
algorithms can achieve extraordinary performances after
being trained on a large-scale labeled dataset [20]. For ex-
ample, one popular benchmark dataset for face recognition
is Megaface, which contains more than 1 million photos.
Those photos are from 690,572 individuals [16]. In the field
of autonomous driving, to train an effective self-driving
algorithm under different weather and lighting conditions,
a large-scale labeled dataset is required. For example, the
nuScenes Dataset contains 1.4 million images [5]. Hence,
preparing a large-scale labeled dataset is an essential step
for real-world AI applications.

Currently, the data labeling work mainly depends on
human efforts, which is labor-intensive and time-consuming.
Estimated by Cognilytica Research [6], 25% of time spent
on AI projects is data labeling. To save efforts, many orga-
nizations outsource the data labeling work to third-party
companies, such as Amazon [4]. In these companies, the
labelers should be trained first. However, it is still difficult
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to guarantee all labelers follow the same labeling criteria.
In fact, it is almost impossible to define what is the optimal
labeling criteria. For example, [26] find that labelers often
apply subjective criteria on medical diagnosis. Furthermore,
the high labeling quality often relies on lots of practice.
For example, [18] find that more experienced labelers often
have higher precision and recall rates on category labeling.
Therefore, in the early stage of the labeling tasks, labelers
are more likely to make labeling mistakes. In some cases,
the labeling task needs professional knowledge, such as
distinguishing different species of birds [25] and annotating
medical images [29]. Incorrect labels may come from
systematic errors of the annotators and inter-annotator
variations [15, 29]. Consequently, it seems that incorrect
labels are inevitable in practice.

In fact, incorrect labels have been found among many
widely used datasets. For example, [21] reported that 10%
of the labels are incorrect in the QuickDraw Dataset and
3.9% for the Amazon Reviews Dataset. Although incorrect
labels are common in practice, most existing works have
ignored this fact. They directly trained models on the
datasets by treating every sample as if it were correctly
labeled. Unfortunately, this practice would deteriorate the
prediction performance. For example, [1] has trained a
multi-layer perceptron classifier on the handwritten Arabic
digits dataset with different levels of incorrect labels.
Results show that the classification accuracy can be signif-
icantly affected by the incorrect labels. Similar empirical
evidence can be found for deep neural network models
[32, 13]. Therefore, how to account for the mislabeling
mechanism in developing classification methods becomes a
problem of great importance.

There exist plenty of literature that takes the mislabeling
issue into consideration. These works can be roughly clas-
sified into two categories. They are, respectively, the noise
filtering methods and the modified model architectures.
The idea of noise filtering methods is to first distinguish
between the correctly labeled instances and incorrectly
labeled instances by machine learning methods, and then
build models only on the correctly labeled instances
[3, 27, 12, 8, 14]. In this regard, how to distinguish the
incorrectly labeled instances from the correct ones becomes
a problem of critical importance. This leads to two possible
solutions. The first one is to treat instances as incorrectly
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labeled if their predicted labels are different from the
observed ones. However, this method could be problematic,
because even for correctly labeled instances, their observed
labels and predicted labels could still be different. Such a
difference is not due to labeling mistakes. The second solu-
tion is to produce an absolutely correctly labeled dataset
by human efforts. However, it could be very expensive in
human cost and also face inter-labeler variability.

Apart from the noise filtering methods, many researchers
resort to modifying model architectures to account for the
mislabeling issue. BayesANIL [24] proposed a Bayesian
model for learning with approximate, noisy or incomplete
labels. However, their method required to pre-specify the
noise rate, which is hardly known in practice. Other typical
examples focus on modifying the deep learning models,
such as the Noisy Labels Neural-Network (NLNN) algo-
rithm [2], the decoupling method [19], and the co-teaching
method [11]. However, these modified deep learning models
often have a large number of unknown parameters. For
example, the NLNN algorithm has more than half a
million parameters, and the decoupling method and the co-
teaching method both have more than 8 million parameters.

To address the above problems, we propose here an im-
proved Näıve Bayes model for document classification with
incorrect labels. Our algorithm evolves from the Näıve Bayes
model, which has been verified as arguably one of the most
useful tools for document classification [28, 8]. To address
the mislabeling issue, we model the mislabeling mechanism
by a mislabeling probability matrix. Accordingly, the log-
likelihood function can be spelled out. This gives us an op-
portunity to study the identifiability issue and develop an
EM algorithm for model estimation. Simulations and ex-
periments on real-world benchmark datasets show that our
algorithm outperforms the traditional Näıve Bayes model
and some other baseline methods.

2. RELATED WORK

As we described before, classification with mislabeled
data is a problem of fundamental importance. The existing
literature has applied different strategies to tackle this
issue. Those methods can be roughly classified into two
categories. The first category uses noise filtering methods
to produce clean data for the following data analysis tasks.
The second category focuses on modifying the architectures
of models, so that the mislabeling behavior can be taken
into consideration. We summarize related works in each
category as follows.

Noise Filtering Methods. One way to handle the
mislabeled instances is to use noise filtering methods.
The basic idea of this type of methods is to train models
to distinguish the correctly labeled instances from the

mislabeled ones. Then, subsequent data analysis tasks are
only accomplished on the correctly labeled instances. For
example, [3] applied a series of learning algorithms, e.g.,
decision trees, k-nearest neighbor classifiers, and linear
machines, to construct noise filters. The instances whose
predicted labels were different from their observed labels
would be discarded as mislabeled data. [27] built a support
vector machine as a filter on the training data and removed
all instances that are incorrectly classified by the filter. [12]
constructed a pair of neural networks called Truth Neural
Network (Truth NN) and Falsity Neural Network (False
NN) for binary classification problems, thus each label is
either 0 or 1. Those two networks had the same structures
and inputs. However, the Truth NN was trained on the
observed labels. In contrast, the False NN was trained on
the complement of the observed labels. The complement of
a binary label is defined to be one minus the label. Instances
predicted mistakenly by both the Truth NN and the False
NN were treated as mislabeled instances. [8] adopted a
Näıve Bayes classifier to predict the class label for each
training instance based on the highest posterior probability.
Then the training instances whose labels are different from
the predicted labels were removed from the training dataset
to produce noise-free data for the following analysis. [14]
first required a small dataset with all correct labels to learn
data-driven curriculums. Then a deep leaning model called
MentorNet was trained on this dataset to offer preliminary
information on the mislabeled data. Finally, the base deep
Convolutional Neural Networks (CNNs) called StudentNet
was constructed and updated together with the MentorNet
during the training process.

The merit of noise filtering methods is that they are
straightforward and intuitive. However, they face some
challenges. Specifically, to apply the noise filtering meth-
ods, one must distinguish whether an instance is correctly
labeled or not. In this regard, two typical strategies are
adopted. One is to compare the observed label with the
predicted label and regard a sample as mislabeled when the
two labels do not match. This strategy is very subjective,
because even if all observed labels are correct, most clas-
sifiers can still produce wrong predictions. Thus, when a
mismatch occurs, it is difficult to distinguish whether it is
a mislabeled sample or just a wrong prediction. The second
strategy is to produce a purely correctly labeled dataset
by human efforts, which leads to additional labeling cost.
Again, the human labeling process might also generate
incorrect labels. In other words, it is expensive and hard to
create a purely correct dataset in practice.

Modified Model Architecture Methods. Another
approach to handle the mislabeled instances is to directly
modify the model architectures. The basic idea of this type
of methods is to model the mislabeled behaviors under
probabilistic or non-parametric frameworks. For example,
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[24] constructed a Bayesian model called BayesANIL.
They treated the true labels as latent variables. Then
an EM algorithm was applied to deal with the unlabeled
and mislabeled instances. [2] proposed the Noisy Labels
Neural-Network (NLNN) model by assuming the observed
labels were created from the true labels by passing through
a noisy channel. Subsequently, an extra noise layer was
introduced to the neural networks to model the noisy
labels. [10] extended the work of [2] by allowing that the
appearance of noisy labels depended not only on the true
labels, but also on the input features. [19] developed the
decoupling method by training two networks. In each mini-
batch iteration, the instances with inconsistent predicted
labels by the two networks would be picked out. Then
the two networks updated their parameters on the picked
out instances. [11] developed the co-teaching method by
training two neural networks. Each network fed forward on
each mini-batch and selected the data with small losses as
the clean data. Then each network back propagated the
selected clean data which were offered by its peer network.

The merit of these methods is that the incorrectly
labeled instances do not need to be distinguished from
the correct ones at the model input stage. However, those
methods are still accompanied by some issues. First, some
models are typically very complicated. For example, the
NLNN model contains half a million parameters [2, 10].
The decoupling and co-teaching methods are required to
update over 8 million parameters [19, 11]. Second, there is
a strong assumption underlying this strategy. That is, all
the incorrect labels should share the same pattern so that
a model could be established to discover this pattern and
pick out the incorrect labels. However, in some cases, the
incorrect labels happen in a purely random way. Therefore,
it is nearly impossible for models to accurately predict
those randomly generated incorrect labels. Finally, some
methods require prior knowledge of some important tuning
parameters. For example, the application of the BayesANIL
method requires the knowledge of the noise rate [24], which
is often unknown in practice.

Our Contributions. Inspired by the existing literature,
we develop an improved Näıve Bayes model for text classifi-
cation. We focus on text classification because it is a problem
of wide applications. The improved Näıve Bayes model is
analytically simple and free of subjective judgements on the
correct and incorrect labels. By assuming the true labels are
unobserved and specifying the mechanism of generating in-
correct labels, the corresponding log-likelihood functions can
be constructed and an EM algorithm can be developed. Sim-
ulations and experiments on real-world benchmark datasets
show that our algorithm outperforms the traditional Näıve
Bayes classifier and some other baseline methods.

3. IMPROVED NAÏVE BAYES WITH
MISLABELED DATA

3.1 Notations and Model

Suppose there are a total of N instances. Each instance
belongs to one of the K classes. Define Y ∗

i ∈ {1, · · · ,K} as
the true label of the ith instance with 1 ≤ i ≤ N . For each
instance, we collect a d-dimensional binary feature vector.
For example, for a document classification problem, each
document is viewed as an instance. A feature of a document
can be defined as whether the document contains a specific
word. If the word occurs in the document, the value of the
feature is 1, otherwise 0. For the ith instance, the binary fea-
ture vector is denoted by Xi = (Xi1, ..., Xid)

⊤. We denote
all the instances by X = {Xi, 1 ≤ i ≤ N}. The true la-
bels for all instances are collected by Y∗ = {Y ∗

i , 1 ≤ i ≤ N}.

To investigate the relationship between the training in-
stances X and the true labels Y∗, a typical Näıve Bayes
model can be applied by maximizing the log-likelihood func-
tion lnP (X,Y∗). Let πk = P (Y ∗

i = k) denote the proba-

bility of class k. We then have
∑K

k=1 πk = 1. Let pjk =
P (Xij = 1|Y ∗

i = k) denote the probability of the jth fea-
ture being 1 in class k, and θ be the total parameter set,
i.e., θ = {pjk, 1 ≤ j ≤ d, 1 ≤ k ≤ K} ∪ {πk, 1 ≤ k ≤ K}. To
estimate θ, we can construct the log-likelihood function as
follows

ℓ(θ) = lnP (X,Y∗) =

N∑
i=1

lnP (Xi, Y
∗
i )

=

N∑
i=1

lnP (Y ∗
i ) +

N∑
i=1

d∑
j=1

lnP (Xij |Y ∗
i )

=

N∑
i=1

lnπY ∗
i
+

N∑
i=1

d∑
j=1

Xij ln pjY ∗
i

+

N∑
i=1

d∑
j=1

(1−Xij) ln
(
1− pjY ∗

i

)
.

The objective of the Näıve Bayes model is to maximize the
log-likelihood function ℓ(θ). However, the above estimation
is feasible only if all the true labels are observable. Neverthe-
less, it is common that, the observed labels may be incorrect
in reality due to the mislabeling issue. Simply regarding the
observed labels as true labels can deteriorate the estimation
performances of the Näıve Bayes model. We discuss how to
address the mislabeling issue in the subsequent sections.

3.2 Mislabeling Mechanism

First, we specify the mislabeling mechanism, which
facilitates subsequent model estimation. We assume that
the true label Y ∗

i is a latent variable and the observed label
is denoted by Yi. We then denote the observed labels for
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all instances by Y = {Yi, 1 ≤ i ≤ N}. Following literature
[22, 33], we assume P (Yi|Y ∗

i , Xi) = P (Yi|Y ∗
i ). By doing

so, we assume that the mislabeling pattern is random and
does not depend on the feature Xi given the true label Y ∗

i .
We next consider how to model the mislabeling mechanism
P (Yi ̸= Y ∗

i |Y ∗
i ) appropriately.

Define ρk1k2
to be the probability that a labeler labels

an instance as class k1 when the true class is k2 with 1 ≤
k1, k2 ≤ K. This leads to a mislabeling probability matrix
as follows 

ρ11 ρ12 · · · ρ1K
ρ21 ρ22 · · · ρ2K
...

...
. . .

...
ρK1 ρK2 · · · ρKK

 ,(1)

where
∑K

k1=1 ρk1k2
= 1 for 1 ≤ k2 ≤ K. As one can see,

if ρkk = 1 for 1 ≤ k ≤ K, then this model reduces to a
standard Näıve Bayes model. Otherwise, it becomes a new
model. If we have ρk1k2

= ρk2k1
for any k1 ̸= k2, we then

refer to (1) as a symmetric mislabeling matrix. With this
model setup, the whole parameter set becomes θ = {pjk, 1 ≤
j ≤ d, 1 ≤ k ≤ K} ∪ {πk, 1 ≤ k ≤ K} ∪ {ρk1k2 , 1 ≤ k1, k2 ≤
K}. The corresponding log-likelihood function is

ℓ(θ) = lnP (X,Y,Y∗|θ)

=

N∑
i=1

{
lnP (Y ∗

i |θ) + lnP (Yi|Y ∗
i , θ) +

d∑
j=1

lnP (Xij |Y ∗
i , θ)

}

=

N∑
i=1

lnπY ∗
i
+

N∑
i=1

ln ρYiY
∗
i
+

N∑
i=1

d∑
j=1

Xij ln pjY ∗
i

+

N∑
i=1

d∑
j=1

(1−Xij) ln (1− pjY ∗
i
).(2)

At the first glance, it seems that we cannot rule out the
theoretical possibility that ρkk < maxk′ ρk′k for 1 ≤ k ≤ K
under this mislabeling mechanism. If this happens, there
might exist one k ∈ {1, · · · ,K}/{Y ∗

i }, such that P (Yi =
k|Y ∗

i ) > P (Yi = Y ∗
i |Y ∗

i ). This suggests that there might
exist one mistaken class so that the corresponding mislabel-
ing probability is even larger than that of correct labeling.
This seems to be very unreasonable. Our further theoretical
analysis reveals that without any constraints on the misla-
beling probability matrix in (1), the mislabeling mechanism
might suffer from an identifiability issue. We present the
identifiability issue in the following subsection.

3.3 Identifiability Issue

As we mentioned before, the mislabeling mechanism
might suffer from an identifiability issue. The key reason is
as follows. Note that the true labels Y∗ are latent. Without
any constrains on the mislabeling probability matrix, any
arbitrary assignment of Y∗ would be acceptable as long as
the probability distribution of the observed labels Y can be

replicated. Consider, for example, a classification problem
with the true label Y ∗

i ∈ {1, · · · ,K} and the observed label
Yi ∈ {1, · · · ,K}. Here we shift the true label Y ∗

i to Y ∗
i + 1

for Y ∗
i ∈ {1, · · · ,K − 1} and replace Y ∗

i = K with 1. We

denote the shifted labels by Ỹ ∗
i and collect all the shifted

labels into Ỹ∗. Denote the one-to-one mapping from Y ∗
i to

Ỹ ∗
i by g(·). Recall that the log-likelihood function based on

Y∗ is given in (2). However, with a shift of ρk1k2
s and pjks,

the value of the new log-likelihood function based on Ỹ∗

remains the same. The new labeling probability ρ̃k1k2 satis-
fies ρ̃k1k2 = ρk1g−1(k2) and the new feature probability p̃jk

satisfies p̃jk = pjg−1(k). Denote the new parameter set as θ̃.

Consequently, the new log-likelihood function based on Ỹ∗

becomes

ℓ̃
(
θ̃
)
= ln

(
X,Y, Ỹ∗

∣∣∣θ̃)
=

N∑
i=1

{
lnP

(
Ỹ ∗
i

∣∣∣θ̃)+lnP
(
Yi

∣∣∣Ỹ ∗
i , θ̃

)
+

d∑
j=1

lnP
(
Xij

∣∣∣Ỹ ∗
i , θ̃

)}

=

N∑
i=1

lnπỸ ∗
i
+

N∑
i=1

ln ρ̃YiỸ
∗
i
+

N∑
i=1

d∑
j=1

Xij ln p̃jỸ ∗
i

+

N∑
i=1

d∑
j=1

(1−Xij) ln (1− p̃jỸ ∗
i
).

One can easily verify that the resulting log-likelihood val-
ues are exactly the same as before, i.e., ℓ(θ) = ℓ̃(θ̃). This
suggests that the observed probabilistic behavior about Y
and X can be equally well explained by either Y∗ or Ỹ∗ with
different parameters. As a consequence, the model under
this mislabeling mechanism might not be uniquely identi-
fied. Then how to solve this identifiability issue becomes an
important problem. In this regard, we notice that a qualified
labeler should not perform too badly, in the sense that the
diagonal probabilities should be larger than the off-diagonal
probabilities. Otherwise, there might exist one class k1 ̸= k2
satisfying P (Yi = k1|Y ∗

i = k2) > P (Yi = k2|Y ∗
i = k2). Thus,

we are motivated to assume that the diagonal element ρkk
is larger than the off-diagonal element ρk′k with k′ ̸= k, i.e.,
ρkk > maxk′ ̸=k ρk′k for every 1 ≤ k ≤ K. This makes the
model based on (1) identifiable.

3.4 Mislabeling Impact

As we demonstrated before, the incorrect labels
might/might not hurt the performances of the models
severely [1]. In this subsection, we study the mislabeling
impact theoretically and show when the mislabeling has
little impact on the predictions and when it is a big issue.
We start with a warm-up case with K = 2.

Two-Class Case. When there are only two classes, the
mislabeling probability matrix in (1) becomes a 2 × 2 ma-
trix. For simplicity, we consider a balanced sample size in
each class here with P (Y ∗

i = 1) = P (Y ∗
i = 2) = 0.5. For

illustration purpose, we further assume that ρ12 = ρ21 so
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that P (Yi = 1) = P (Yi = 2) = 0.5. Recall that the prob-
ability of the jth feature being 1 in class k is denoted by
pjk ≜ P (Xij = 1|Y ∗

i = k) for any k ∈ {1, 2}. For a more
intuitive understanding, assume without loss of generality
that pj1 > pj2. This suggests that the random event Xij = 1
is more likely to happen with Y ∗

i = 1 than Y ∗
i = 2. This fur-

ther implies that P (Y ∗
i = 1|Xij = 1) > P (Y ∗

i = 2|Xij = 1)
if equal prior probability can be assumed for Y ∗

i . Conse-
quently, if Xij = 1 is the only information we have, we
should naturally predict Y ∗

i to be 1. Then, it is of great in-
terest to query how this might be affected by mislabeling.
We are particularly interested in knowing the relative order
of P (Yi = 1|Xij = 1) and P (Yi = 2|Xij = 1). We then have

P (Yi = 1|Xij = 1)− P (Yi = 2|Xij = 1)

= 0.5× (pj1 − pj2)× (ρ11 − ρ12)/P (Xij = 1) > 0,(3)

since pj1 − pj2 > 0 and ρ11 − ρ12 > 0 by model assumption.
By (3), we find that the relative order of P (Yi = 1|Xij = 1)
and P (Yi = 2|Xij = 1) is not changed by mislabeling.
Consequently, if Xij = 1 is the only information we have,
we should naturally predict Yi to be 1. This prediction
result is the same as that of Y ∗

i . This suggests that the
adverse effect caused by the mislabeling seems to be very
limited for this particular special case.

Multiple-Class Case with Constant Mislabeling
Probability. The above discussion suggests that the ad-
verse effect due to mislabeling could be very small if K = 2
and if the mislabeling probability matrix is symmetric. We
are then inspired to study the case with K ≥ 3. For sim-
plicity purpose, we consider a case with a constant mis-
labeling probability. That is to assume that ρkk = ρ for
some ρ ∈ (0.5, 1) and ρk1k2 = (1 − ρ)/(K − 1) for any
k1 ̸= k2. We consider here equal prior probability for
each class. Without loss of generality, we can assume that
pjk1

> pjk2
. This implies that the random event Xij = 1 is

more likely to happen with Y ∗
i = k1 than Y ∗

i = k2. Then
it is more reasonable to predict Y ∗

i = k1 than Y ∗
i = k2

if Xij = 1 is observed. In fact, it can be verified that
P (Y ∗

i = k1|Xij = 1) > P (Y ∗
i = k2|Xij = 1) if equal prior

probability for Y ∗
i can be assumed. Specifically, we can also

compute P (Yi = k1|Xij > 1)− P (Yi = k2|Xij > 1) by

P (Yi = k1|Xij > 1)− P (Yi = k2|Xij > 1)

=

(
1

K

)
× (pjk1 − pjk2)×

(
Kρ− 1

K − 1

)
/P (Xij = 1) > 0,(4)

with K ≥ 3 and ρ > 0.5. By (4), the relative order
of P (Yi = k1|Xij = 1) and P (Yi = k2|Xij = 1) re-
mains the same as that of P (Y ∗

i = k1|Xij = 1) and
P (Y ∗

i = k2|Xij = 1) for any two classes k1 ̸= k2. Thus,
the predictions of the Näıve Bayes model based on the
observed labels are the same as that of the model based
on the true labels. This suggests that the adverse effect
due to mislabeling should be very limited as long as the
mislabeling probability is constant.

Multiple-Class Case with Varying Mislabeling
Probability. We next study the case with K ≥ 3 and non-
constant mislabeling probabilities. Specifically, we consider
here a special K ≥ 3 case. The mislabeling probability ma-
trix is given as follows

ρ 1− ρ 1− ρ · · · 1− ρ
1− ρ ρ 0 · · · 0
0 0 ρ · · · 0
...

...
...

. . .
...

0 0 0 · · · ρ

 ,(5)

where 0.9 ≤ ρ < 1. In this case, we require that K ≫
ρ/(1−ρ)+1 ≥ 11. By this mislabeling probability matrix, we
assume that class 1 is the most confusing one. Specifically,
we know that ρk1k2

= 0 for any k1 > 2, k2 > 2, and k1 ̸=
k2. In other words, no mislabeling happens between any
class pairs, unless one of the class is class 1. If the true
class Y ∗

i = 1, then with probability ρ the observed class Yi

remains to be 1 and with probability (1 − ρ) the observed
class Yi becomes 2. If the true class Y ∗

i is class k ≥ 2, then
with probability ρ the observed class Yi remains to be k and
with probability (1 − ρ) the observed class Yi becomes 1.
For simplicity, we assume pj1 ≪ pjk for k ≥ 2. This leads
to P (Y ∗

i = 1|Xij = 1) < P (Y ∗
i = k|Xij = 1). However, one

can easily verify that

P (Yi = 1|Xij = 1)− P (Yi = k|Xij = 1)

=

(
1− ρ

K

)
×
{(

ρ

1− ρ

)
pj1 + (K − 1)pj2 −

(
ρ

1− ρ

)
pj2

}
> 0,

for any k > 2. Thus, serious adverse effect is caused by
the mislabeling mechanism. Consequently, the Näıve Bayes
model can hardly differentiate class 1 from class k > 2. This
special case suggests that when incorrectness accumulates
on a few number of classes, the Näıve Bayes model might
have trouble in correctly identifying those classes. This is
the case where a small fraction of incorrect labels can still
cause big trouble and the problem cannot be solved by
simply enlarging sample sizes.

Note that the labeling mistakes may severely deteriorate
the classification accuracy. Then how to evaluate the misla-
beling effect becomes a problem of great importance. Note
that the classification accuracy is an important metric for
classification performance evaluation. Denote the classifica-
tion accuracy based on (X,Y) by ACC. Denote the classifi-
cation accuracy based on (X,Y∗) by ACC∗. We can define
their difference ∆ACC = ACC−ACC∗ as a simple measure
for mislabeling effect.

3.5 An EM Algorithm

As we demonstrated in the Subsection 3.3, the log-
likelihood function derived by the mislabeling mechanism
is identifiable by assuming that the mislabeling probabil-
ity matrix in (1) satisfies ρkk > maxk′ ̸=k ρk′k for every
1 ≤ k ≤ K. Specifically, we consider how to estimate
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the corresponding model by optimizing the log-likelihood
function ℓ(θ). Since the true labels Y∗ are unknown, ℓ(θ)
cannot be optimized directly. Therefore, we develop an
EM algorithm to iteratively estimate the parameters and
optimize the log-likelihood function. In each iteration, an
expectation step (E step) and a maximization step (M step)
are conducted. Below, we discuss each step in details.

E step. In the tth iteration, we compute the expectation
of the log-likelihood ℓ(θ) given the observed data (X,Y) and
the current parameter estimate θ̂(t). The conditional expec-
tation can be derived as

Q
(
θ, θ̂(t)

)
=E
{
ℓ(θ)

∣∣∣X,Y, θ̂(t)}
=

N∑
i=1

K∑
k=1

γ̂
(t)
ik lnπk +

N∑
i=1

K∑
k=1

γ̂
(t)
ik ln ρYik

+

N∑
i=1

d∑
j=1

K∑
k=1

Xij γ̂
(t)
ik ln pjk

+

N∑
i=1

d∑
j=1

K∑
k=1

(1−Xij)γ̂
(t)
ik ln (1− pjk),(6)

where γ̂
(t)
ik denotes P (Y ∗

i = k|Xi, Yi, θ̂
(t)). The computation

of (6) depends on γ̂
(t)
ik for 1 ≤ i ≤ N and 1 ≤ k ≤ K. To

compute γ̂
(t)
ik , we first define ζ̂

(t)
ik as follows

ζ̂
(t)
ik = π̂

(t)
k ρ̂

(t)
Yik

d∏
j=1

p̂
(t)Xij

jk

{
1− p̂

(t)
jk

}1−Xij

.(7)

Then we compute γ̂
(t)
ik = ζ̂

(t)
ik /

∑K
k=1 ζ̂

(t)
ik .

M step. In this step, we maximize the conditional expec-

tation Q(θ, θ̂(t)) to get the new estimate θ̂(t+1). Note that∑K
k=1 πk = 1 and

∑K
k1=1 ρk1k2

= 1 for 1 ≤ k2 ≤ K. Based
on the Lagrange multiplier method, we can define the La-
grangian function as

Q = Q
(
θ, θ̂(t)

)
+ λ

(
1−

K∑
k=1

πk

)
+

K∑
k2=1

λk2

1−
∑
k1=1

ρk1k2

 ,

where λ and λk2
with 1 ≤ k2 ≤ K are additional parameters

used in the Lagrange multiplier method. After maximizing
the Lagrangian function Q, the updated parameters in the
(t+ 1)th iteration are computed as

π̂
(t+1)
k =

N∑
i=1

γ̂
(t)
ik /N, 1 ≤ k ≤ K,

p̂
(t+1)
jk =

(
N∑
i=1

Xij γ̂
(t)
ik

)/(
N∑
i=1

γ̂
(t)
ik

)
, 1 ≤ j ≤ d, 1 ≤ k ≤ K,

ρ̂
(t+1)
k1k2

=

(
N∑
i=1

I(Yi = k1)γ̂
(t)
ik2

)/(
N∑
i=1

γ̂
(t)
ik2

)
, 1 ≤ k1, k2 ≤ K.

To initialize the parameters, we could set π̂k = 1/K for 1 ≤
k ≤ K. In addition, for p̂jk (1 ≤ j ≤ d, 1 ≤ k ≤ K) we use

random initialization. We conduct random initialization for ρ̂k1k2

with the diagonal elements larger than 0.5 for 1 ≤ k1, k2 ≤ K.

Subsequently, the E step and the M step are conducted iteratively

until convergence or the pre-specified maximum iteration steps

are reached.

4. EXPERIMENTS

4.1 Simulation Experiments

Numerical studies are conducted to evaluate the finite
sample performances of the proposed method.

Simulation Data. We generate synthetic data and
set the dimension of the instances to be d = 500. Each
instance belongs to one of the K = 5 classes. The data
size is set to be n = 500, 1000, and 5000. 20% of the
simulation data are split into the testing set. The prior
probability πk is set to be 1/K for any 1 ≤ k ≤ K. An
unbalanced case is included in Appendix A.2. The diagonal
elements of the mislabeling probability matrix are ran-
domly generated from different intervals, which are shown
in Table 1. The off-diagonal elements are then randomly
sampled from [0, 1) such that

∑K
k1=1 ρk1k2

= 1 for any
1 ≤ k2 ≤ K. The pjks are generated by adding up uniform
random numbers from [0, 0.1) and normal random numbers
with mean 0.65 and standard deviation 0.06. In each simu-
lation setting, the experiment is repeated for B = 100 times.

Baseline Methods. We compare the improved Näıve
Bayes method (INB) with: 1) the Näıve Bayes (NB)
model without considering the incorrect labeling; 2) NLNN
method of [2]; 3) NAL1 method of [10]; 4) the NB model
using the true values of the parameters (NB-T).

Evaluation Metrics. We evaluate the proposed method
from two perspectives. First, we use the mean squared
error (MSE) to evaluate parameter estimation accuracy.
The MSE is defined mean square of the difference between
estimated parameters and the true values of the parameters.
MSE =

∑d
j=1

∑K
k=1(p̂jk − pjk)

2/(dK), which measures the
estimation accuracy. Second, we use the classification accu-
racy (ACC) on the testing set to evaluate the classification
accuracy, i.e., ACC = s/n0 × 100%, where s is the number
of correctly predicted labels in the testing set and n0 is the
size of the testing set. Third, we also compute the AUC2

(i.e., the area under the receiver operating characteristic
curve, ROC) of the methods [31]. The AUC we used here is
the macro-AUC metric, which is a multi-class performance
measure. Fourth, We also evaluated the mislabeling effect
∆ACC on the simulation data, which is defined in Section
3.4.

1https://github.com/udibr/noisy labels
2https://scikit-learn.org/stable/modules/model evaluation.html#roc-
metrics
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Table 1. Finite sample performances of different methods with different ρkk intervals and sample sizes.

MSE×10−3 ACC (%) AUC (%)
ρkk Intervals n NB INB NB INB NB-T NNLN NAL NB INB NB-T NNLN NAL ∆ACC (%)

[0.55, 0.65)
500 3.3 2.9 66.0 83.2 96.6 20.7 28.3 90.7 97.2 99.7 52.7 63.7 -22.3
1000 2.2 1.2 75.9 92.6 96.9 21.1 39.3 94.7 99.4 99.8 55.4 74.8 -17.6
5000 1.0 0.2 90.9 95.0 95.7 30.8 80.6 99.1 99.7 99.8 64.4 96.5 -4.2

[0.65, 0.75)
500 3.0 2.8 73.8 84.0 96.6 20.7 30.5 94.2 97.7 99.7 53.8 67.8 -14.5
1000 1.7 1.2 85.3 92.7 96.9 21.1 46.8 97.9 99.4 99.8 56.4 80.6 -8.1
5000 0.7 0.2 93.3 95.1 95.7 35.3 86.1 99.5 99.7 99.8 66.7 98.0 -1.8

[0.75, 0.85)
500 2.7 2.7 78.7 85.6 96.6 20.8 32.9 96.0 98.1 99.7 55.0 70.0 -9.6
1000 1.4 1.2 89.2 93.0 96.9 22.0 54.6 98.8 99.4 99.8 58.6 85.2 -4.2
5000 0.4 0.2 94.2 95.1 95.7 34.9 88.6 99.6 99.7 99.8 65.6 98.6 -0.9

[0.85, 0.95)
500 2.4 2.5 84.3 86.8 96.6 21.7 36.8 97.9 98.4 99.7 56.7 73.3 -4.0
1000 1.2 1.2 91.8 93.2 96.9 22.3 60.0 99.3 99.5 99.8 58.7 88.1 -1.6
5000 0.3 0.2 94.7 95.1 95.7 35.6 90.1 99.7 99.7 99.8 65.2 99.0 -0.4

[1.0, 1.0]
500 2.3 2.4 88.2 88.0 96.6 22.1 40.0 98.8 98.7 99.7 56.9 76.2 0.0
1000 1.1 1.1 93.4 93.3 96.9 24.0 64.5 99.5 99.5 99.8 61.7 90.4 0.0
5000 0.2 0.2 95.1 95.1 95.7 31.2 92.1 99.7 99.7 99.8 62.4 99.3 0.0

Simulation Results with 0.5 < ρkk < 1. From the
last column of ∆ACC in Table 1, we know that as ρkks
increase, the mislabeling effect ∆ACC decreases. It is
reasonable because with the increase of ρkks, the number
of the incorrect labels decreases, so that the mislabeling
effect is relieved. The MSE, ACC, and AUC results under
different ρkk intervals and data sizes are presented in Table
1. An example of the ROC curve [9] is plotted in Figure 1,
which is an average of the ROC curves for different classes.
First, we observe that with the increase of data size, the
performances of the different methods become better. Next,
when ρkks increase, the average performances of different
methods become better and closer. Since the true values
of the parameters are unknown in practice, the NB-T
method is not feasible in real-world applications. In the
simulation study, the performances of the NB-T method
can act as an important reference for the theoretically
optimal classification performances. The performances of
the INB method are closer to that of the NB-T method
than the NB method. Last, besides the NB-T method,
the INB method outperforms the other methods across all
simulation settings most of the time. Specifically, under
different ρkk intervals and data sizes, the INB method has
achieved smallest MSE values, highest ACC values, and
highest AUC values on the testing sets most of the time.
This illustrates the advantage of the proposed INB method.

Simulation Results with ρkk = 1. Note that if ρkk = 1
for any 1 ≤ k ≤ K, there are no incorrect labels generated
in the simulation experiments. Thus, the mislabeling effect
∆ACC is naturally 0. When no mislabeling happens, the
performances of the NB, INB, and NB-T become identical
and optimal.

Figure 1. An arbitrarily selected illustrative example of the
ROC curve with n = 1000 and ρkk ∈ [0.55, 0.65).

4.2 Real Data Experiments

The 20 Newsgroups Benchmark Dataset. We
compare the performances of each method on an important
benchmark dataset 20 Newsgroups [17]. It is a dataset
containing 18,846 documents with 15,076 in the training
set and 3,770 in the testing set. First, we construct a
dictionary of 130,107 words for the documents. Next, we
compute the TF-IDF value for each word and maintain the
top 7,302 words with the highest TF-IDF values. To gain
some intuitive understanding about the features (or words),
we list the top 10 representative features in Table 2. The
mislabeling samples have been artificially created by [30]
and the noise rates range from 0.1 to 0.5. We follow their
practice to set mislabeling rate as 20%. The detailed results
are given in Figure 2. We compare the performances of the
five methods: 1) NB(wrong), a NB model trained on the
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Table 2. Top 10 representative features of the 20 Newsgroups datset.

Doc ID windows NASA god drive apple IBM car Virginia MIT space

5554 1 1 1 1 1 1 0 1 1 1
1117 1 1 1 1 1 1 0 1 1 1
7404 1 1 0 1 1 1 0 1 1 1
2086 1 1 0 0 0 1 0 0 1 0
4770 1 1 0 0 0 1 0 0 1 1

Figure 2. Classification accuracy results on the 20
Newsgroups Dataset.

training set, which contains wrong labels; 2) INB method;
3) NLNN method; 4) NAL method; 5) NB(correct), a NB
model trained on the training data with correct labels. The
mislabeling effect ∆ACC on the 20 Newsgroups dataset
with 20% mislabeling rate is -12.85%. We find that the
performances of the INB method are very close to NB based
on the correct labels, outperforming the other methods.

Live Streaming Dialog Dataset3. To further illus-
trate our method, we present here another interesting
real dataset analysis generously donated by our industry
collaborators. During the epidemic of COVID-19, a lot
of consumers turn to live streaming platforms such as
TikTok to watch the streamers introducing products.
Consumers are free to ask questions about the products
by sending live comments or messages to the streamers.
Responding to those comments or messages immediately
and appropriately is likely to increase the product sales.
However, when considerable consumers are sending live
comments or messages in a very short time, it is a great
burden for the streamers to respond immediately. Such a
burden could be relieved by building an auto-responder bot.
One possible workflow for an efficient auto-responder bot is
that it first classifies a message into a specific category and
then responds according to the category.

3https://github.com/Helenology/Improved-Naive-Bayes-with-
Mislabeld-Data/blob/main/data0126.csv

The objective of this study is to design a system, which
answers consumers’ questions automatically. To this end,
we need to classify those messages into different categories
according to a carefully designed reply strategy; see the 3rd

column in Table 3. For example, all the questions related
to loans are formed into one category. Whenever a message
is correctly classified into this category, the automatic
system should reply to the consumer according to standard
procedures, which are listed in Figure 4 in Appendix A.3.
The automatic reply system is a sophisticated system,
which has experienced a huge amount of tests and improve-
ments. This leads to a total of 13 categories together with
their automatic replying strategy; see Table 3 for the details.

Subsequently, volunteers are used to interact with a
preliminarily designed auto-responder bot and collect
abundant messages, most of which are relevant to pur-
chasing cars of one particular brand. Then, volunteers are
required to label the messages according to the pre-defined
13 categories. However, we found that the labels are not
always correct. For research purpose, all those labels are
manually and carefully checked by field experts. This
leads to a set of carefully checked labels, which could be
considered as the golden standard. This leads to a dataset
with N = 1416 messages. For each message, both the
observed label Yi and the true label Y ∗

i are provided. After
a careful inspection, we find that about 19.49% of the
observed labels are incorrect.

For modeling the classification problem, we extract a
feature vector of d = 22 dimension from the text infor-
mation of the message. Each feature is a binary feature
carefully defined by the field experts, with the pre-defined
13-category-based auto response strategy taken into consid-
eration; see the last column in Table 3. This is a procedure
containing multiple important steps. First, several field
experts from a live streaming platform provide us with
basic keyword dictionaries for different categories. Next,
the basic keyword dictionaries are used for preliminary
classifications. Last, the missed yet important keywords
from the wrong predictions are added into the keyword
dictionaries. This leads to the final set of keywords used
for feature definitions. For example, many consumers are
interested in discount information. As a result, the corre-
sponding messages should contain keywords like “discount”

8 Q. Zeng et al.
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Table 3. Thirteen Categories that the messages are classified into and their corresponding responses.

Category Number Category Description Response Strategy

1 Questions related to loans Ask for the consumer’s contact information.
2 Questions related to discounts Directly reply “The discount is XX%”.
3 Questions related to car prices Directly reply “The car price is XX RMB”.
4 Questions related to total cost Directly reply “The total cost is XX RMB”.
5 Questions related to availability Directly reply “The car is available/unavailable”.
6 Questions related to license plate Answer “Yes” for the same province/“No” otherwise.
7 Questions related to store address Directly reply the store address.
8 Questions totally irrelevant Ignore the message and do not reply.
9 Leaving contact information Directly reply “Message received”.
10 Asking for contact information A salesman/saleswoman will be automatically assigned.
11 Greeting message without car information Ask for the consumer’s car preference.
12 Messages without configuration information Ask for the consumer’s configuration preference.
13 Unclear message about new or second-hand cars Directly ask “Do you mean a new or second-hand car”.

or “cheaper”. Then, a binary feature can be defined as X17

to indicate whether the consumer is interested in discount
information or not. As one can see, this is a feature not
only useful for the subsequent classification task but also
can be nicely interpreted. For a more intuitive under-
standing, the detailed descriptions for all those features of
the Live Streaming Dialog Dataset are listed in Table 4.
There are a total of 22 independent binary variables. If a
message satisfies the conditions listed in the 2nd column
in Table 4, then the corresponding variable is 1, otherwise 0.

Experimental Setup. We randomly assign 80% of
the data to the training set, while the rest 20% are
assigned to the testing set. The training set contains
both correct and incorrect labels. However, the testing
set only contains the correctly labeled data to evaluate
the classification accuracy. The split of the training set
and testing set is repeated for B = 100 times. Under
each split, we compare the classification accuracy of five
methods: 1) NB(wrong), which is a NB model trained on
the training set containing incorrect labels; 2) INB method;
3) NLNN method; 4) NAL method; 5) NB(correct), which
is a NB model trained on the training set with correct labels.

Experimental Results. The mislabeling effect on the
Live Streaming Dialog Dataset is -7.32%. Figure 3 presents
classification accuracy results obtained by the five meth-
ods in B = 100 dataset splits. The proposed INB method
outperforms the other methods. On average, by adding the
mislabeling mechanism, the INB method has improved the
classification accuracy of the NB method by 3.7%. The pre-
diction performances of the INB method are very close to
that of the NB(correct) method, which is the NB method
trained on the data whose labels are all correct.

5. DISCUSSION

We proposed an INB method for text classification.
The INB method is analytically simple and free of sub-

Figure 3. Classification accuracy results on the Live
Streaming Dialog Dataset.

jective judgements on the correct and incorrect labels. By
specifying the mechanism of generating incorrect labels,
we optimize the corresponding log-likelihood function by
an EM algorithm. We conduct simulation experiments
to illustrate the advantage of the proposed INB method.
Furthermore, we present a Live Streaming Dialog Dataset to
study the empirical performances of the INB method. Both
numerical results suggest the INB method has competitive
performances with mislabeled dataset.

To conclude this article, we discuss here an interesting
topic for future study. In this work, we focus on the classical
NB method with binary features. On the other hand, contin-
uous variables are often encountered in real practice. Then,
how to accommodate continuous features into the proposed
INB framework becomes a problem of great interest. The key
issue here is what kind of distribution assumptions should
be imposed for the continuous features. One straightforward
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Table 4. Descriptions for the independent variables.

Variable Name The Practical Meaning

X1 Whether the message contains car information only?
X2 Is the message a question?
X3 Is the message the first message sent by the consumer?
X4 Whether this message is about one specific car?
X5 Whether detailed car configuration information is provided in the message?
X6 Is configuration information included in the message?
X7 Is this a message about the car store address?
X8 Whether the consumer’s contact information is given in the message?
X9 Whether this message is about a new car?
X10 Whether the message is about a second-hand car?
X11 Does the consumer ask for contact information in this message?
X12 Is the message a statement about one specific car?
X13 Has the consumer left his contact information in the previous messages?
X14 Is the message a question on license plates?
X15 Is the message a question on total cost?
X16 Is the message a question on car prices?
X17 Is the message a question on discounts?
X18 Is the message a question on whether the car is available or needs reservations?
X19 Is the message a question on loans?

X20

Is the message not about the loan, total cost, car price, discount, asking for
contact information, leaving contact information, availability,

car store address, or license plate?

X21

Is the message not about the loan, total cost, car price, discount, asking for
contact information, leaving contact information, availability,

car store address, or license plate?
Is the message the first message sent by the consumer?

X22

Is the message not about the loan, total cost, car price, discount, asking for
contact information, leaving contact information, availability,

car store address, or license plate?
Is the message the first message sent by the consumer?

Can we tell which car the consumer refers to in this message?

solution could be the Gaussian assumption. In this case, an
EM-type algorithm can be readily developed (see Appendix
A.1 for details). However, whether this is the best assump-
tion for optimal empirical performances is not immediately
clear. More flexible nonparametric distribution assumptions
might be promising alternatives. A more in-depth analysis
should be definitely needed in this regard.

APPENDIX

A.1 Continuous Features

Here we consider how to add continuous features to the
INB model with Gaussian assumptions. Suppose there are
d1 binary features and d2 continuous features. Denote the
binary features by Xi = (Xi1, · · · , Xid1

)⊤. Denote the con-
tinuous features by Zi = (Zi1, · · · , Zid2

)⊤. We collect all the
Xis into X and Zis into Z. Similar to the Gaussian Näıve
Bayes model, we assume that p(zij |Y ∗

i = k) = ϕjk(zij)
for 1 ≤ k ≤ K and 1 ≤ j ≤ d2, where ϕjk(·) is a
normal distribution density function with mean µjk and
standard deviation σjk. The whole parameter set becomes
θ = {pjk, 1 ≤ j ≤ d1, 1 ≤ k ≤ K} ∪ {πk, 1 ≤ k ≤

K} ∪ {ρk1k2 , 1 ≤ k1, k2 ≤ K} ∪ {µjk, 1 ≤ j ≤ d2, 1 ≤ k ≤
K}∪{σjk, 1 ≤ j ≤ d2, 1 ≤ k ≤ K}. Then the corresponding
log-likelihood becomes

ℓc(θ) = lnP (X,Z,Y,Y∗|θ)

=

N∑
i=1

lnP (Y ∗
i |θ) +

N∑
i=1

lnP (Yi|Y ∗
i , θ)

+

N∑
i=1

d1∑
j=1

lnP (Xij |Y ∗
i , θ) +

N∑
i=1

d2∑
j=1

lnP (Zij |Y ∗
i , θ)

=

N∑
i=1

lnπY ∗
i
+

N∑
i=1

ln ρYiY
∗
i
+

N∑
i=1

d1∑
j=1

Xij ln pjY ∗
i

+

N∑
i=1

d1∑
j=1

(1−Xij) ln (1− pjY ∗
i
) +

N∑
i=1

d2∑
j=1

lnϕjY ∗
i
(Zij).

Correspondingly, we can develop an EM algorithm similar to
that in the Subsection 3.5.

E Step. In the tth iteration, we compute the expectation of
the log-likelihood ℓc(θ) given the observed data (X,Z,Y) and the
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Table 5. Finite sample performances of different methods with different ρkk intervals and unbalanced sample sizes.

MSE×10−3 ACC (%) AUC (%)
ρkk Intervals n NB INB NB INB NB-T NNLN NAL NB INB NB-T NNLN NAL ∆ACC (%)

[0.55, 0.65)
1000 2.5 1.6 72.4 90.7 97.0 23.5 47.0 92.3 99.1 99.9 56.3 68.0 -19.4
5000 1.3 0.3 88.9 95.2 96.2 38.1 78.8 98.5 99.6 99.8 64.2 94.4 -6.4
10000 1.2 0.2 92.0 96.4 96.5 52.3 89.2 99.4 99.8 99.8 76.3 98.3 -4.3

[0.65, 0.75)
1000 2.1 1.6 81.5 90.8 97.0 27.6 50.1 96.5 99.1 99.9 58.4 73.9 -10.2
5000 0.9 0.3 92.3 95.2 96.2 44.0 84.3 99.3 99.6 99.8 66.8 96.7 -3.0
10000 0.8 0.2 94.1 96.4 96.5 61.4 91.6 99.6 99.8 99.8 77.6 99.0 -2.3

[0.75, 0.85)
1000 1.8 1.6 86.5 90.9 97.0 32.1 52.4 97.9 99.1 99.9 60.5 77.4 -5.3
5000 0.6 0.3 94.0 95.2 96.2 51.1 87.7 99.5 99.6 99.8 68.7 97.9 -1.3
10000 0.5 0.2 95.3 96.3 96.5 61.5 93.0 99.7 99.8 99.8 74.1 99.3 -1.1

[0.85, 0.95)
1000 1.5 1.5 90.2 91.3 97.0 33.7 56.3 98.8 99.2 99.9 60.7 80.1 -1.5
5000 0.4 0.3 94.8 95.2 96.2 47.6 89.4 99.6 99.6 99.8 66.4 98.4 -0.4
10000 0.2 0.2 96.1 96.3 96.5 62.9 94.1 99.8 99.8 99.8 75.5 99.5 -0.3

[1.0, 1.0]
1000 1.4 1.5 91.8 91.7 97.0 37.4 58.5 99.3 99.3 99.9 61.5 81.3 0.0
5000 0.3 0.3 95.3 95.3 96.2 47.4 91.4 99.6 99.6 99.8 64.6 98.9 0.0
10000 0.1 0.1 96.4 96.4 96.5 59.4 95.1 99.8 99.8 99.8 72.1 99.7 0.0

current parameter estimate θ̂(t). The conditional expectation can
be derived as

Q
(
θ, θ̂(t)

)
= E

{
ℓc(θ)

∣∣∣X,Z,Y, θ̂(t)}
=

N∑
i=1

K∑
k=1

γ̂
(t)
ik lnπk+

N∑
i=1

K∑
k=1

γ̂
(t)
ik ln ρYik+

N∑
i=1

d1∑
j=1

K∑
k=1

Xij γ̂
(t)
ik ln pjk

+

N∑
i=1

d1∑
j=1

K∑
k=1

(1−Xij)γ̂
(t)
ik ln (1− pjk)+

N∑
i=1

d2∑
j=1

K∑
k=1

γ̂
(t)
ik lnϕjk(Zij),

where γ̂
(t)
ik denotes P (Y ∗

i = k|Xi, Zi, Yi, θ̂
(t)) for 1 ≤ i ≤ N and

1 ≤ k ≤ K. To compute γ̂
(t)
ik , we first define ζ̂

(t)
ik as follows

ζ̂
(t)
ik = π̂

(t)
k ρ̂

(t)
Yik

[ d1∏
j=1

p̂
(t)Xij

jk

{
1− p̂

(t)
jk

}1−Xij
]
×
[ d2∏

j=1

ϕ̂
(t)
jk (Zij)

]
,

where ϕ̂
(t)
jk (Zjk) = 1/

√
2πσ̂

(t)2
jk × exp{−(Zjk − µ̂

(t)
jk )/(2σ̂

(t)2
jk )}.

Then we compute γ̂
(t)
ik = ζ̂

(t)
ik /

∑K
k=1 ζ̂

(t)
ik .

M step. In this step, we maximize the conditional expectation
Q(θ, θ̂(t)) to get the new estimate θ̂(t+1). Note that

∑K
k=1 πk = 1

and
∑

k1=1 ρk1k2 = 1 for 1 ≤ k2 ≤ K. Based on the Lagrange
multiplier method, we can define the Lagrangian function as

Q = Q
(
θ, θ̂(t)

)
+ λ

(
1−

K∑
k=1

πk

)
+

K∑
k2=1

λk2

1−
∑
k1=1

ρk1k2

 ,

where λ and λk2 for 1 ≤ k2 ≤ K are additional parameters
used in the Lagrange multiplier method. After maximizing the
Lagrangian function Q, the updated parameters in the (t+ 1)th
iteration are computed as

π̂
(t+1)
k =

N∑
i=1

γ̂
(t)
ik /N, 1 ≤ k ≤ K,

p̂
(t+1)
jk =

(
N∑
i=1

Xij γ̂
(t)
ik

)/(
N∑
i=1

γ̂
(t)
ik

)
, 1 ≤ j ≤ d1, 1 ≤ k ≤ K,

ρ̂
(t+1)
k1k2

=

(
N∑
i=1

I(Yi = k1)γ̂
(t)
ik2

)/(
N∑
i=1

γ̂
(t)
ik2

)
, 1 ≤ k1, k2 ≤ K,

µ̂
(t+1)
jk =

(
N∑
i=1

Zij γ̂
(t)
ik

)/(
N∑
i=1

γ̂
(t)
ik

)
, 1 ≤ j ≤ d2, 1 ≤ k ≤ K,

(
σ̂
(t+1)
jk

)2
=

{
N∑
i=1

γ̂
(t)
ik

(
Zij − µ̂

(t+1)
jk

)2}/(
N∑
i=1

γ̂
(t)
ik

)
.

The EM algorithm designed for both binary and continuous fea-

tures is similar to that in the Subsection 3.5. Since we have con-

tinuous features Zis, updating γ̂
(t)
ik involves in the parameters

(µ̂
(t)
jk , σ̂

(t)
jk ) for 1 ≤ j ≤ d2 and 1 ≤ k ≤ K. Furthermore, we also

have to update (µ̂
(t)
jk , σ̂

(t)
jk ) in the M Step.

A.2 Unbalanced Sample Size

We next study the unbalanced sample size effect. To this
end, we follow the same data generating strategy as Section
4.1 but with only two modifications. The first modification
is that the prior probability of the class 1 is set to be 3
times the probability of other classes. That is π1 = 0.428
and πk = 0.143 for k > 1. The second modification is that
the data size is set to be n = 1000, 5000, and 10000. We
set the classes to be K = 5. For validation purpose, about
20% of the simulated data are reserved for testing in each
random replication. The detailed results are given in Table
5. We find that the results are qualitatively similar to that
of Table 1.

A.3 Flow Chart of the Labeling Process

To consumers’ questions automatically, we first classify
those messages into different categories according to a care-

Improved Näıve Bayes with Mislabeled Data 11



Figure 4. Flow chart of the reply procedures.

fully designed reply strategy; see the 3rd column in Table 3.
Whenever a message is correctly classified into this category,
it is then replied to the consumer according the procedures
listed in Figure 4. For example, if the consumer asks about
discounts about a specific car without configuration infor-
mation, then he or she will receive a message asking for his
or her configuration preference.
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