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1. INTRODUCTION

Spatial autoregressive (SAR) model is originally proposed for analyzing spatial data

(Anselin, 2013; Banerjee et al., 2014). The SAR model assumes that observation from

each spatial location is a weighted average of its spatial neighbours and a random noise.

By doing so, the sophisticated spatial dependency could be modeled. Recently, this

model also gains great popularity in social network analysis. This is because social

network data are similar to spatial data, in the sense that observations from connected

users are correlated. This makes the SAR model a candidate for network data analysis

(Yang and Allenby, 2003; Chen et al., 2013; Liu, 2014; Cohen-Cole et al., 2018).

It is remarkable that the classical SAR model is designed for univariate response.

In real practice, multivariate responses are typically encountered. As a result, there

is a practical need to extend the SAR model to multivariate cases (Kelejian and

Prucha, 2004; Liu, 2014; Cohen-Cole et al., 2018). Consider for example Sina Wei-

bo (www.weibo.com), the largest Twitter-type social media in Chinese. One can treat

the number of user posts as a univariate response. Then, the classical SAR model can

be used to study the inter-dependency of activeness level among users. Further more,

the user posts could be classified according to the contents (e.g., Finance, Economics).

They naturally constitute a multivariate response for each user. There are also em-

pirical examples showing that cross-response network effects could exist in individuals’

behaviors. For example, Cohen-Cole et al. (2018) find that there are non-trivial within-

and cross-choice peer effects for the students having higher grades and watching TV.

To characterize this type of data, Yang and Lee (2017) study a multivariate spatial

autoregressive (MSAR) model, and associate it with the simultaneous equations SAR

(SESAR) models (Kelejian and Prucha, 2004; Baltagi and Bresson, 2011; De Graaff

et al., 2012; Liu, 2014; Cohen-Cole et al., 2018). To estimate the model, a quasi max-
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imum likelihood estimator (QMLE) is developed. Accordingly, the asymptotic theory

is established. In this work, we re-study the QMLE but under a different set of tech-

nical conditions, which are more suitable for large scale social networks. The resulting

asymptotic properties of QMLE are also re-investigated.

Although QMLE can be statistically efficient, the computational cost could be

expensive. This is because the determinant of a high dimensional matrix needs to be

computed, where the matrix dimension equals to the network size. In the meanwhile,

it is typical for a social network to have millions (or even billions) of users. The huge

network size (or matrix dimension) imposes a serious challenge on QMLE computation.

On the other hand, real large scale networks are usually extremely sparse, because most

network users are connected with only a very limited number of friends. As a result,

more efficient algorithms can be developed for maximum likelihood estimation (Barry

and Pace, 1999; Smirnov and Anselin, 2001; LeSage and Pace, 2007; Huang et al.,

2016; Zhou et al., 2017). Under the condition that the network structure is sufficiently

sparse, the consistent estimator can be designed and the computational complexity

can be significantly reduced (Huang et al., 2016; Zhou et al., 2017). Besides the MLE-

based approaches, other IV-based estimation methods, such as two stage least squares

(2SLS) estimation and three stage least squares (3SLS) estimation, are also developed

and widely used (Kelejian and Prucha, 2004; Baltagi and Deng, 2015; Cohen-Cole et al.,

2018). Although the computational burden can be reduced, such methods could not

work without exogenous variables, and can be less statistically efficient (Yang and Lee,

2017).

In this work, we propose to use a novel least squares method to estimate the MSAR

model. The basic idea is to study the conditional expectation of the focal user, given

the responses from the rest of the network. This leads to a least squares type objective
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function, which involves only two types of connections in network, and therefore can be

practically optimized. As a consequence, the computational complexity can be greatly

reduced. The identification issue is further investigated. Rigorous asymptotic theory is

established. The theoretical findings and computational comparisons are corroborated

by extensive simulation studies. A real data example about Sina Weibo is presented

for illustration propose.

The rest of the article is organized as follows. Section 2 introduces the MSAR

model and the parameter space. Section 3 investigates the parameter estimation and

the corresponding asymptotic properties. Numerical studies are given in Section 4.

The article is concluded with a brief discussion in Section 5. All technical details are

left to the Appendix and a separate supplementary material.

2. MULTIVARIATE SPATIAL AUTOREGERESSION

2.1. Model and Notations

Consider a large scale network with N nodes. To describe the network structure,

define an adjacency matrix A = (ai1i2) ∈ RN×N , where ai1i2 = 1 if the i1th node

follows the i2th node (i1 6= i2), and ai1i2 = 0 otherwise. We always assume aii = 0,

for 1 ≤ i ≤ N . In addition, we define W = (wi1i2) ∈ RN×N as the row-normalized

adjacency matrix, where wi1i2 = n−1i1 ai1i2 and ni1 =
∑

i2
ai1i2 is called nodal out-

degree. For the ith node, assume that a p-dimensional continuous response vector

(Yi1, · · · , Yip)> ∈ Rp is recorded. Accordingly, let Y = (Yij) ∈ RN×p be the response

matrix collected from N nodes. In addition, define Yj = (Y1j, · · · , YNj)> ∈ RN to be

the jth column vector of Y, where 1 ≤ j ≤ p. Correspondingly, we include exogenous

variables to enhance the interpretability of the responses (LeSage, 2008; Anselin, 2013).
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Specifically, let X = (X1, · · · ,Xq) ∈ RN×q be the q-dimensional exogenous covariates

of the N nodes.

To model Yj, the following MSAR model is considered. For 1 ≤ j ≤ p,

Yj = djjWYj +

p∑
j′ 6=j

dj′jWYj′ +

q∑
k=1

bkjXk + Ej, (2.1)

where dj′j and bkj for 1 ≤ j, j′ ≤ p, 1 ≤ k ≤ q are unknown parameters, and

Ej = (ε1j, · · · , εNj)> ∈ RN is the noise vector from the jth response. Specifically,

εi = (εi1, · · · , εip)> ∈ Rp (1 ≤ i ≤ N) is assumed to be identically and independently

distributed with mean 0p ∈ Rp and cov(εi) = Σe ∈ Rp×p. In model (2.1), the first

term WYj reflects the impact from connected neighbors but the response itself. Ac-

cordingly, the parameter djj is referred to as intra-activity effect. In addition to that,

the quantity WYj′ with j′ 6= j characterizes the impact due to other responses, where

the corresponding parameter dj′j (j′ 6= j) is called extra-activity effect. It can be noted

that the intra- and extra-activity effects are also referred to as endogenous effect and

cross-activity peer effect, respectively. (Cohen-Cole et al., 2018). Without the second

term, model (2.1) degenerates to a classical SAR model. Lastly, the term
∑q

k=1 bkjXk

reflects the influence of the exogenous variables, where the corresponding coefficient

can be referred to as own effect (Liu, 2014; Cohen-Cole et al., 2018). In addition, the

model is referred to as pure MSAR model if the exogenous variables are not included.

Remark 1. Note that only own covariate of each node is included in (2.1). In prac-

tice, contextual effect from peers’ influence could also be considered, which yields the

following model (Liu, 2014; Cohen-Cole et al., 2018),

Yj = djjWYj +

p∑
j′ 6=j

dj′jWYj′ +

q∑
k=1

b1,kjXk +

q∑
k=1

b2,kjWXk + Ej, (2.2)
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where {b1,kj : 1 ≤ k ≤ q, 1 ≤ j ≤ p} and {b2,kj : 1 ≤ k ≤ q, 1 ≤ j ≤ p} reflect

own effects and contextual effects from peers respectively. This makes the model more

flexible. In fact, the estimation method of {b2,kj : 1 ≤ k ≤ q, 1 ≤ j ≤ p} is similar

to {b1,kj : 1 ≤ k ≤ q, 1 ≤ j ≤ p}. This is because once WXks are calculated, they

could also be treated as exogenous variables as Xks, for 1 ≤ k ≤ q. As a result,

the generalization to model (2.2) could be further made through the same estimation

technique. Therefore for the sake of simplicity, we focus on model (2.1) to discuss its

statistical properties in the rest of this article.

Recall that the response matrix is Y = (Y1, · · · ,Yp). Write D = (dj′j) ∈ Rp×p and

B = (bkj) ∈ Rq×p, which collect all the regression coefficients. Note that D is usually

asymmetric. Then model (2.1) could be re-written in matrix form as

Y = WYD + XB + E, (2.3)

where E = (E1, · · · , Ep) ∈ RN×p is the matrix of noise terms.

Remark 2. Note the MSAR model (2.3) can be also linked to the simultaneous

equations SAR (SESAR) model (Cohen-Cole et al., 2018; Yang and Lee, 2017). The

SESAR model takes the form as

YΓ = WYD + XB + E, (2.4)

where parameter Γ ∈ Rp×p is introduced as simultaneity effect (Cohen-Cole et al.,

2018). Intuitively, the MSAR model can be obtained by setting Γ = Ip, where Ip is the

(p× p)-dimensional identity matrix. The SESAR model is empirically widely used and

the estimation methods are investigated (Kelejian and Prucha, 2004; Yang and Lee,

2017). The detailed discussion about SESAR model and MSAR model can be found
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in Yang and Lee (2017). In this article, we concentrate on the MSAR model, which

allows us to be more focus on the network effect D and own effect B.

2.2. Parameter Space

In order to study the feasible parameter space of model (2.3), we re-organize the

MSAR model into a vector form as

Y = (D> ⊗W )Y + X̃β + E , (2.5)

where Y = vec(Y) = (Y>1 ,Y>2 , · · · ,Y>p )> ∈ RNp, X̃ = Ip ⊗ X, E = vec(E) =

(E>1 , E>2 , · · · , E>p )> ∈ RNp, β = vec(B) ∈ Rpq, and ⊗ is the kronecker product. We

define In ∈ Rn×n to be the (n × n)-dimensional identity matrix. As a result, it could

be derived that Y = (INp − D> ⊗W )−1(X̃β + E). Let λj(D) be the jth eigenvalue

of D such that |λ1(D)| ≥ |λ2(D)| ≥ · · · ≥ |λp(D)|. In order to ensure the matrix

(INp −D> ⊗W ) to be invertible, a sufficient condition is given in Lemma 1.

Lemma 1. Assume |λ1(D)| < 1, then (INp −D> ⊗W ) is invertible.

The proof of Lemma 1 is given in Section 1 in the separate supplementary material.

We then assume the condition |λ1(D)| < 1 throughout the rest of this article. By the

invertibility of (INp−D>⊗W ), the covariance of Y could be written as Σ = cov(Y) =

(INp − D> ⊗ W )−1(Σe ⊗ IN)(INp − D ⊗ W>)−1. To obtain more insights of Σ, we

consider two special cases with Σe = σ2Ip and B = 0q,p, where 0q,p ∈ Rq×p with all

elements equal to 0.

Case 1. (D is diagonal) In this case, D can be written as D = diag{d11, d22, · · · , dpp}.

Consequently, (2.1) becomes Yj = djjWYj+Ej (1 ≤ j ≤ p), in which the jth response is

only correlated to itself. As a result, the multiple responses can be modeled separately.
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It can be easily obtained that Σ has a block diagonal structure, where Σ = σ2diag{Σ11,

· · · ,Σpp}, where Σjj = (IN − djjW )−1(IN − djjW>)−1.

Case 2. (First Order Taylor’s Expansion) In practice, the elements in D (i.e., dj′js)

are usually small for a large scale social network (Chen et al., 2013; Zhu et al., 2017).

This enables us to approximate Σ by its first order Taylor’s expansion with respect to

D as

Σ = σ2(INp −D> ⊗W )−1(INp −D ⊗W>)−1 ≈ σ2
{
INp +D> ⊗W +D ⊗W>}.

As a result, for 1 ≤ i1, i2 ≤ N , 1 ≤ j1, j2 ≤ p, we have

cov(Yi1j1 , Yi2j2) ≈ σ2I(i1 = i2, j1 = j2) + σ2(dj2j1n
−1
i1
ai1i2 + dj1j2n

−1
i2
ai2i1), (2.6)

where I(·) is the indicator function. By (2.6), we obtain the following interesting obser-

vations. If i1 6= i2 or j1 6= j2, the approximation of cov(Yi1j1 , Yi2j2) is σ2(dj2j1n
−1
i1
ai1i2 +

dj1j2n
−1
i2
ai2i1). This implies higher covariance between Yi1j1 and Yi2j2 if (a) the network

effect between j1th and j2th response (i.e., dj1j2 and dj2j1) is large, and (b) node i1 and

i2 are mutually connected (i.e., ai1i2 = ai2i1 = 1). The correlation can be stronger if i1

and i2 are loyal to each other, which implies they both have small out-degrees (i.e., ni1

and ni2).

3. PARAMETER ESTIMATION

3.1. Maximum Likelihood Estimation

Let Ωe = Σ−1e , S = INp − D> ⊗W , and X̃ = Ip ⊗ X. In addition, denote D =

vec(D) ∈ Rp2 and ξe = vec∗(Ωe) ∈ Rp(p+1)/2, where vec∗(Ωe) ∈ Rp(p+1)/2 selects only
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up-triangle parameters of Ωe, since the covariance matrix Σe has to be symmetric.

Let θ = (D>, β>, ξ>e ) ∈ Rnpq collect the parameters to be estimated, where npq =

p2 + p(p+ 1)/2 + pq. Given the form of MSAR model, one could write down the quasi

log-likelihood function as

`(θ) = log |S| − (N/2) log |Σe| − (1/2)(SY − X̃β)>(Ωe ⊗ IN)(SY − X̃β), (3.1)

where some constants are ignored. Denote θ̂M = arg maxθ `(θ) ∈ Rnpq to be the

QMLE. The asymptotic properties of θ̂M have been studied by Yang and Lee (2017)

under certain technical conditions, which fit spatial data quite well. However, some of

the conditions might be too stringent for a large scale social network. For example,

the column sum of the weighting matrix W can hardly be bounded for a large scale

social network.

To relax the technical conditions, we re-investigate the asymptotic properties of

QMLE by focusing on large scale social network data with different technical conditions.

(C1) (Network Structure)

(C1.1) (Connectivity) Let the set of all the nodes {1, · · · , N} be the state space

of a Markov chain, with the transition probability given by W . The Markov

chain is assumed to be irreducible and aperiodic. In addition, define π =

(πi)
> ∈ RN to be the stationary distribution vector of the Markov chain

(i.e., πi ≥ 0,
∑

i πi = 1, and W>π = π). Assume
∑N

i=1 π
2
i = O(N−1/2−δ),

where 0 < δ ≤ 1/2 is a positive constant.

(C1.2) (Uniformity) Assume |λ1(W ∗)| = O(logN), where W ∗ is symmetric, and

defined as W ∗ = W +W>.

(C2) (Law of Large Numbers) Assume the limits of certain network features exist,
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which are listed in (A.6) to (A.10) in Appendix A.1.

(C3) (Covariates) For an arbitrary vector β ∈ Rpq, assume N−1‖X̃β‖2 = O(1) as

N →∞.

(C4) (Noise Term) Let Σe be decomposed as Σe = (Σ
1/2
e )>(Σ

1/2
e ). Let ε̃i = (Σ

1/2>
e )−1εi

= (ε̃i1, · · · , ε̃ip)> ∈ Rp. Assume E(ε̃4ij) = κ4, and E(ε̃ij1 ε̃ij2 ε̃ij3) = 0 for 1 ≤ i ≤ N

and 1 ≤ j1, j2, j3, j ≤ p, where κ4 and σ2 are finite constants.

Condition (C1) imposes assumptions on the network structure, which can be divided

into two separate conditions. Condition (C1.1) requires certain connectivity for network

structure. More specifically, one can verify that both irreducibility and aperiodicity

could be satisfied if the network is fully connected after a finite number of steps.

This condition is satisfied if the well known six degrees of separation theory (Newman

et al., 2006) holds. Condition (C1.2) imposes certain uniformity assumption on network

structure. Compared with Assumption 4 of Yang and Lee (2017), which requires

the row and column sums of W to be bounded, (C1.2) allows λ(W ∗) to be slowly

diverging with the rate of O(logN). Next, condition (C2) is a law of large numbers

type condition. This condition basically insures the convergence of certain network

features as N →∞. Subsequently, conditions (C3) and (C4) set regularity conditions

on exogenous covariates and noise terms respectively. The assumptions are to facilitate

the asymptotic analysis and the adoption of the central limit theorem. One could

generalize the exogenous covariates assumption (C4) to stochastic X̃ with moment

conditions. Consequently, we have the following theorem.

Theorem 1. Assume the conditions (C1)-(C4), we have the conclusion that
√
N(θ̂M−

θ) →d N(0npq , (Σ
M
2 )−1ΣM

1 (ΣM
2 )−1) as N → ∞, where ΣM

1 and ΣM
2 are assumed to be
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positive definite matrices as

ΣM
2 =


ΣM

2d ΣM
2dβ ΣM

2de

ΣM>
2dβ ΣM

2β 0
pq,

p(p+1)
2

ΣM>
2de 0 p(p+1)

2
,pq

ΣM
2e


, ΣM

1 = ΣM
2 +


∆M

1d 0p2,pq ∆M
1de

0pq,p2 0pq,pq 0
pq,

p(p+1)
2

∆M>
1de 0 p(p+1)

2
,pq

∆M
1e


.

(3.2)

The formula of the asymptotic covariance in (3.2) is given in Appendix A.1.

The proof of Theorem 1 is given in Appendix B.1. By Theorem 1, we know that

QMLE is
√
N -consistent. Although the QMLE can be statistically efficiently in most

occasions, its computational cost can be high. We then develop a novel estimator in

the following section to reduce the computational complexity.

3.2. Least Squares Estimation

As we mentioned before, the computational cost of QMLE is high. This is mainly

because the determinant of (INp − D> ⊗ W ) ∈ RNp×Np is involved and its compu-

tational complexity is of O(N3). To fix this problem, we develop here a novel least

squares estimation method. Let Y−(i1j1) = {Yij : (i, j) 6= (i1, j1)}. To illustrate the

method, we first discuss the conditional mean of Yi1j1 given Y−(i1j1) under the assump-

tion that Y follows multivariate normal distribution. Then we prove the consistency

and asymptotic normality under the general non-normal case.

Denote Mj· and M·j as the jth row and column vector of M respectively. First

it could be verified that the conditional mean E
{
Yi1j1|Y−(i1j1)

}
takes the form as
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E
{
Yi1j1|Y−(i1j1)

}
= µi1j1 +

∑(N,p)
(i2,j2)6=(i1,j1)

αi1j1i2j2(Yi2j2 − µi2j2), where

αi1j1i2j2 =
D>j1·Ωe,·j2wi2i1 + Ω>j2·D·j1wi1i2 − (D>j1·ΩeDj2·)(

∑N
i=1wii1wii2)

ωe,j1j1 + (D>j1·ΩeDj1·)(
∑N

i=1w
2
ii1

)
, (3.3)

and µij = E(Yij). The verification of (3.3) is given in Section 2 in the separate sup-

plementary material. Even though the quantity in (3.3) is analytically complicated, it

is computationally feasible due to the sparsity of the network structure. Specifically,

the summation involved in (3.3) only counts when: (1) nodes i1 and i2 are directly

connected (i.e., wi1i2 6= 0 or wi2i1 6= 0) as shown in the left panel of Figure 1; or (2) i1

and i2 are indirectly connected through a third node i such that
∑

iwii1wii2 6= 0; see

the 2-out-star structure in the right panel of Figure 1. Therefore, the computational

cost can be greatly reduced since only the “second order friends” are involved in the

computation. It is a common phenomenon for the real social network to be sufficiently

sparse, which indicates the number of connected edges (ai1i2 = 1) can be extremely s-

mall. As a result, if the number of nodes connected with i (either directly or indirectly)

are limited, the computational complexity could even be as low as O(N).

Figure 1: Two types of nodes involved in (3.3). The left panel: directly connected nodes (i.e.,
wi1i2 6= 0 or wi2i1 6= 0); The right panel: indirectly connected nodes (i.e.,

∑
iwii1wii2 6= 0).
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Let Y∗ =
{
E(Yij|Y−(ij)) : 1 ≤ i ≤ N, 1 ≤ j ≤ p

}
∈ RN×p and Y∗ = vec(Y∗).

Recall S = INp − D> ⊗ W . Subsequently, define Ω = Σ−1 = S>(Σ−1e ⊗ IN)S and

m = diag−1(Ω) = {diag(Σ−1e ) ⊗ IN + diag(DΣ−1e D>) ⊗ diag(W>W )}−1. Then it can

be verified that

Y∗ = U −m(Ω−m−1)(Y − U),

where U = E(Y) = S−1(Ip⊗X)β. Accordingly, a least squares type objective function

can be constructed as

Q(θ) = ‖Y − Y∗‖2 =
∥∥∥mS>(Σ−1e ⊗ I){SY − X̃β}

∥∥∥2. (3.4)

Verification of (3.4) is given in Section 3 in the separate supplementary material. It is

noteworthy that the objective function (3.4) only involves S, instead of its determinant

and inverse form. In addition, with regards to the computation of m = diag−1(Ω),

one should note that although it involves an inverse of a giant matrix, it is not hard

to compute. This is because diag(Ω) actually takes a diagonal form, whose inverse

can be computed by taking the inverse of each diagonal element. This only requires

low computational complexity. Moreover, only the previous two types of friends (i.e.,

Figure 1) are involved in computation. This makes the computation feasible even in

large scale social network. By minimizing (3.4), the least squares type estimator (LSE)

θ̂L = arg minθQ(θ) can be obtained.

Next, in the following two sections, we discuss the identification issue and the

asymptotic properties of the proposed LSE.
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3.3. Identification of LSE

In this section, we discuss the identification issue of LSE in the MSAR model (2.5).

To motivate the discussion, we consider a univariate SAR model Y = ρ0WY +Xβ0+E ,

where Y ∈ RN is the response vector, X ∈ RN×q is the exogenous covariate matrix, ρ0

and β0 ∈ Rq are corresponding true parameters. Lee (2004) has mentioned that under

this model specification, Y can be represented as

Y = Xβ0 + ρ0W (IN − ρ0W )−1Xβ0 + (IN − ρ0W )−1E .

Intuitively, to guarantee the identification of ρ0, Xβ0 and W (IN − ρ0W )−1Xβ0 should

not be multicollinear. Theoretically, this statement is rigorously proved by Lee (2004)

as a sufficient condition for the global identification of (ρ0, β
>
0 )> for the quasi-maximum

likelihood estimation. For the multivariate response, the identification issue has also

been established and frequently discussed (Kelejian and Prucha, 2004; Liu, 2014; Yang

and Lee, 2017). We refer to the Section 3 of Yang and Lee (2017) for detailed discussion.

As a result, we focus on the identification issue of θ for the LSE.

To tackle this problem, we follow the technique of Yang and Lee (2017) and calculate

the expected least squares objective function Q(θ). For convenience, denote D0, β0,

Σe0, and θ0 to be the true parameter. In addition, let S0 = INp − D>0 ⊗ W and

Σ0 = S−10 (Σe0 ⊗ IN)(S>0 )−1. Define Q(θ) = E{Q(θ)}. It can be computed that,

Q(θ) =
∥∥∥mS>(Σ−1e ⊗ I)(SS−10 (Ip ⊗ X)β0 − (Ip ⊗ X)β)

∥∥∥2 + tr
(
mΩΣ0Ωm

)
. (3.5)

It suffices to show lim infn→∞minθ∈Bε(θ0) 1/N{Q(θ)−Q(θ0)} > 0, where Bε(θ0) is the

complement of an open neighborhood of θ0 of diameter ε (White, 1996, Theorem 3.4).

Define Ji (i = 1, · · · , p) to be a 1 × p row vector with all zero elements except for
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the ith entry, which is 1. Moreover, let X∗1 = (J1 ⊗ IN)S−10 {Ip ⊗ (WX)}β0, · · · ,X∗p =

(Jp⊗IN)S−10 {Ip⊗(WX)}β0, X∗ = (X∗1, · · · ,X∗p) ∈ RN×p, and X̃∗ = (X∗,X) ∈ RN×(p+q).

We then make the following assumption.

(C5) (Identification Condition) Assume the limit limN→∞N
−1(X̃∗>X̃∗) exists and

is nonsingular.

It can be noted that the condition (C5) corroborates with the identification condition

in the existing literatures (Liu, 2014; Cohen-Cole et al., 2018; Yang and Lee, 2017).

Moreover, sufficient conditions under the social network setting are discussed and given

by Liu (2014) and Cohen-Cole et al. (2018). They establish the identification results

when the network connections have certain intransitivity properties. For the LSE, we

show that the intra- and extra-activity effects (D) and the own effects (B) can be

identified through the following theorem.

Theorem 2. Assume there exists δ > 0 such that

min
|λ1(D)|≤1−δ

{
λmin(SS>)

}
≥ τ, (3.6)

where τ is a positive constant. Under condition (C5), we have that D0 and β0 can be

identified in the parameter space {D : |λ1(D)| ≤ 1− δ}.

The proof of Theorem 2 is given in Section 6.1 in the supplementary material. Note that

condition (C5) could only guarantee the identification of D0 and β0. In some cases,

the condition (C5) can be violated, e.g., the pure MSAR model with no exogenous

covariates. In such a situation, we establish a second identification result which could

be employed to identify D0 and the implied covariance structure Σ∗e0, where Σ∗e0 =

Σe0/tr(Σe). To this end, we first give the definition of the separability of the MSAR

model.
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Definition 1. The MSAR model (2.3) is defined to be separable, if there exists two

non-overlapped index sets I = {i1, · · · , im1} and J = {j1, · · · , jm2} such that

Y(1) = WY(1)D(1) + XB(1) + E(1) and Y(2) = WY1D
(2) + XB(2) + E(2),

where Y(1) = (Yi, i ∈ I) ∈ RN×m1, D(1) = (Di1i2 , i1, i2 ∈ I) ∈ Rm1×m1, B(1) = (Bki, 1 ≤

k ≤ N, i ∈ I) ∈ Rq×m1, E(1) = (Ej, j ∈ I) ∈ RN×m1, and Y(2), D(2), B(2), E(2) are

defined similarly by J . In addition, E(1) and E(2) are uncorrelated with each other.

The definition of separability essentially implies that the MSAR model in (2.3) can be

segmented into at least two uncorrelated equations. Under the definition, we have the

following result.

Theorem 3. (a) Assume I, W , W>, and W>W are linearly independent. Then D0

can be identified. (b) In addition to (a), if p ≥ 2 and model (2.3) is not separable, then

D0 and Σ∗e0 can be globally identified.

The proof of Theorem 3 is given in Section 6.2 in the supplementary material. By

Theorem 3, we know that D0 and Σ∗e0 can be identified if the network structure sat-

isfies certain conditions. Moreover, it can be noted that the identification condition

in Theorem 3 is consistent with the theoretical result in existing literature, i.e., see

Proposition 6 for the QMLE by Yang and Lee (2017).

3.4. Asymptotic Property of LSE

Under the identifiability of the MSAR model, we then investigate the asymptot-

ic properties of the proposed LSE. To this end, we first introduce some notation-

s. Let S̃ = (Ωe ⊗ IN)S. In addition, define F = mS̃>{SY − (Ip ⊗ X)β}, thus
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we have Q(D, β,Σe) = F>F . Denote Qd
j1j2

= ∂Q(θ)/∂dj1j2 , Qβ = ∂Q(θ)/∂β to

be the first order derivatives of Q(θ) with respect to dj1j2 and β. In addition, one

could define the second order derivatives of Q(θ) as Qd
j1j2k1k2

= ∂2Q(θ)/∂dj1j2∂dk1k2 ,

Qd
j1j2β

= ∂2Q(θ)/∂dj1j2∂β, Qββ = ∂Q(θ)/∂β∂β>. The first and second order deriva-

tives of other matrices/vectors can be defined similarly, e.g., for F , m, Ω, respectively.

Define γ = (D>, β>)> ∈ Rp2+pq. In this part, we focus on the asymptotic properties of

γ̂L = (D̂>L , β̂>L )> ∈ Rp2+pq. For convenience, γ̂L is referred to as the LSE thereafter. To

this end, we require the following conditions.

(C6) (Law of Large Numbers) Assume the following limits exist, which are,

limN→∞N
−1cov(Qd

j1j2
, Qd

k1k2
) = Σ

(t1,t2)
1d , limN→∞N

−1cov(Qd
j1j2

, Qβ) = Σ
(t1)
1dβ ∈

Rpq, limN→∞N
−1cov(Qβ, Qβ) = Σ1β ∈ R(pq)×(pq), and limN→∞N

−1E(Qd
j1j2k1k2

) =

Σ
(t1,t2)
2d , limN→∞N

−1E(Qd
j1j2β

) = Σ
(t1)
2dβ ∈ Rpq, limN→∞N

−1E(Qd
ββ) = Σ2β ∈

R(pq)×(pq), with t1 = (j1 − 1)p + j2 (1 ≤ j1, j2 ≤ p) and t2 = (k1 − 1)p + k2 (1 ≤

k1, k2 ≤ p). The detailed matrix forms are given in (3.9) to (3.12) in the following.

Theorem 4. Assume conditions (C1)–(C6) hold. In addition, let Σ1d = (Σ
(t1,t2)
1d : 1 ≤

t1, t2 ≤ p2), Σ1dβ = (Σ
(t1)
1dβ : 1 ≤ t1 ≤ p2)> ∈ Rp2×(pq), Σ2d = (Σ

(t1,t2)
2d : 1 ≤ t1, t2 ≤ p2) ∈

Rp2×p2, Σ2dβ = (Σ
(t1)
2dβ : 1 ≤ t1 ≤ p2) ∈ Rp2×(pq). As N →∞, we have

√
N(γ̂L − γ)→d N(0mpq , (Σ

L
2 )−1ΣL

1 (ΣL
2 )−1), (3.7)

where we have mpq = p2 + pq, and

ΣL
1 =

 Σ1d Σ1dβ

Σ>1dβ Σ1β

 , ΣL
2 =

 Σ2d Σ2dβ

Σ>2dβ Σ2β

 , (3.8)

where the detailed formula of (3.8) is given in the following by (3.9) to (3.12).
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The proof of Theorem 4 is given in Appendix B.2. By Theorem 4, we know that the

LSE γ̂L is also
√
N -consistent.

We next show the detailed derivation of the asymptotic covariance in (3.8). Let Ẽ =

(Ẽ>1 , Ẽ>2 , · · · , Ẽ>p )> = (Σ
−1/2
e ⊗ IN)E , where Ẽk = (ε̃1k, ε̃2k, · · · , ε̃Nk)> ∈ RN . Therefore

we have cov(Ẽ) = INp. Define M1 = mS̃>(Σ
1/2
e ⊗ IN), M2,j1j2 = (md

j1j2
S̃> + mS̃d>j1j2 +

mS̃>Sdj1j2S
−1)}(Σ1/2

e ⊗ IN), M3,j1j2 = mS̃>Sdj1j2S
−1, and J1,j1j2 = M3,j1j2(Ip⊗X)β. We

then have F = M1Ẽ , F d
j1j2

= M2,j1j2 Ẽ + J1,j1j2 . The detailed expressions are given

in Appendix A.2. Moreover, it can be verified Fβ = −mS̃>(Ip ⊗ X). In addition,

define Mj1j2 = M>
1 M2,j1j2 , Jj1j2 = M>

1 J1,j1j2 , H = 2F>β M1. It can be verified that

Qd
j1j2

= 2Ẽ>Mj1j2 Ẽ + 2Ẽ>Jj1j2 and Qβ = HẼ . We then have

Σ
(t1,t2)
1d = lim

N→∞
N−1

{
4tr(Mj1j2M

>
k1k2

) + 4tr(Mj1j2Mk1k2)

+ 4tr{diag(Mj1j2)diag(Mk1k2)}(κ4 − 3) + 4J>j1j2Jk1k2

}
, (3.9)

Σ
(t1)
1dβ = 2 lim

N→∞
N−1(HJj1j2), Σ1β = lim

N→∞
N−1(HH>), (3.10)

Σ
(t1,t2)
2d = 2 lim

N→∞
N−1

{
tr(M>

2,j1j2
M2,k1k2) + J>1,j1j2J1,k1k2

}
, (3.11)

Σ
(t1)
2dβ = 2 lim

N→∞
N−1F>β J1,j1j2 , Σ2β = 2 lim

N→∞
N−1F>β Fβ. (3.12)

The detailed verifications of (3.9) to (3.12) are given in Section 4 in the separate

supplementary material.

4. NUMERICAL STUDIES

4.1. Simulation Models

To demonstrate the finite sample performance of the proposed two methods, we

present three simulation examples. The main difference lies in the generating mech-

anism of the network structure A (i.e., W ). For the noise matrix, we consider two
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different cases, where εi is generated independently: (1) multivariate normal distribu-

tion with mean 02 and covariance Σe = (0.4, 0.1; 0.1, 0.6) ∈ R2×2; (2) t-distribution

with degree 5 and the same mean and covariance as (1). Subsequently, for each node

we sample an exogenous covariate Xi = (Xi1, · · · , Xi2)
> ∈ R2 from a multivariate nor-

mal distribution with mean 02 and Σz = (σj1j2) ∈ R2×2, where σj1j2 = 0.5|j1−j2|. The

corresponding network autoregression coefficient and contextual effect are fixed D as

D = (0.3, 0;−0.2, 0.1) and B = (−0.5, 1.3; 1, 0.3). Lastly, the response Y is generated

according to Y = (I − D> ⊗ W )−1(X̃β + E). We then consider the following three

examples.

Example 1. (Dyad Independence Network) We follow Holland and Leinhardt

(1981) to define a dyad as Aij = (aij, aji) (1 ≤ i < j ≤ N) and assume different Aijs

are independent. In order to reflect network sparsity, we set P (Aij = (1, 1)) = 20N−1.

Therefore, the expected number of the mutually connected dyads (i.e., Aij = (1, 1)) is

O(N). Next, we allow the expected degree of each node to be slowly diverging in the

order of O(N0.2) by setting P (Aij = (1, 0)) = P (Dij = (0, 1)) = 0.5N−0.8. As a result,

the probability of forming a null dyad should be P (Ai,j = (0, 0)) = 1− 20N−1−N−0.8,

which is close to 1 as the network size N is large.

Example 2. (Stochastic Block Network) We next consider the stochastic block

network (Wang and Wong, 1987; Nowicki and Snijders, 2001), which is another popular

network structure and of particular interest for community detection (Zhao et al.,

2012). To generate the block network structure, we follow Nowicki and Snijders (2001)

to randomly assign a block label for each node (k = 1, · · · , K), where K = 10, 20, 50

is the total number of blocks. Then, let P (aij = 1) = 0.9N−1 if i and j belong to the

same block, and P (aij = 1) = 0.3N−1 otherwise. As a result, nodes within the same

block are more likely to be connected.
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Example 3. (Power-Law Distribution Network) In a social network, it is commonly

observed that the majority of nodes have few links but a small proportion have a large

amount of links (Barabási and Albert, 1999). The number of links usually follow

the power-law distribution (Clauset et al., 2009). To mimic this phenomenon, we

simulate the adjacency matrix A according to Clauset et al. (2009) as follows. First,

we generate the in-degree mi =
∑

j aji for node i by the discrete power-law distribution,

i.e., P (mi = k) = ck−α with a normalizing constant c and exponent parameter α = 2.5.

Then, for the ith node, mi nodes are randomly selected as its followers.

4.2. Performance Measurements and Simulation Results

We consider different network sizes (i.e., N = 100, 200, 500) for each simulation

example, and then replicate the experiment for R = 500 times. The proposed esti-

mators (i.e., QMLE and LSE) are compared in each example. Let D̂(r) = (d̂
(r)
jk ) be

the estimator from the rth replication. The following measures are then employed to

evaluate the finite sample performance. For a given parameter djk (1 ≤ j, k ≤ p), the

root mean square error (RMSE) is calculated by RMSEjk = {R−1
∑R

r=1(d̂
(r)
jk −djk)2}1/2

to gauge the estimation accuracy. Next, a 95% confidence interval is constructed

for djk as CI
(r)
jk = (d̂

(r)
jk − z0.975N

−1ŜE
(r)

jk , d̂
(r)
jk + z0.975N

−1ŜE
(r)

jk ), where ŜE
(r)

jk is the

{t = (j − 1)p + k}th diagonal element of the asymptotic covariance in (3.2) and (3.7)

by plugging into the QMLE and LSE respectively, and zα is the αth lower quantile

of a standard normal distribution. Then, the coverage probability is computed as

CPjk = R−1
∑R

r=1 I(d̂
(r)
jk ∈ CI

(r)
jk ), where I(·) is the indicator function. In addition, the

average CPU time and the network density (i.e., {N(N − 1)}−1
∑

i1,i2
ai1i2) are also

reported. Lastly, to further compare the computational efficiency of QMLE and LSE,

we conduct the same experiment with larger sample size (i.e., N from 200 to 2500) for

R = 100 replicates. The average CPU time of QMLE and LSE are given in Figure 2.
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Figure 2: The average CPU time measured in second for dyad independence network (left
panel), stochastic block network (middle panel), and power-law distribution network (right
panel) for 100 replicates. The black solid line is the average CPU time for QMLE and the
red dashed one for LSE.

The detailed results are summarized in Tables 1 to 3. As N increases, the RMSEs

of both QMLE and LSE decrease. Take the dyad independence network for example,

the RMSE for d11 of LSE drops from 0.185 to 0.128 as N increases from 200 to 500

for the normal distribution of E . Moreover, the difference of RMSEs between QMLE

and LSE is sufficiently small (e.g. the difference of RMSE for d12 between QMLE and

LSE is 0.002 for power-law distribution network as N = 1000 in Case 1), which implies

the estimation efficiency of LSE is almost as high as QMLE. Besides, the coverage

probability of both estimators are stable at the nomial level 95%, which implies the

estimated standard error ŜEjk approximates the true standard error SEjk well. Lastly,

in terms of the computational time, the LSE is found to be much faster than the

computation of QMLE especially when n is large. Furthermore, the polynomially

increasing computational time of QMLE compared to LSE is illustrated in Figure 2.
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4.3. A Sina Weibo Dataset

We next elaborate the MSAR model using a dataset collected from Sina Weibo

(www.weibo.com), which is the largest Twitter-type social network in Chinese. The

followers of an MBA official Weibo account are collected and their relationships are

recorded. We investigate the users’ online posting behaviours related to finance and

economics. First, the posts are tagged as Finance or Economics if corresponding

keywords are involved, where the keywords are obtained from an online public Chinese

dictionary. The finance dictionary contains mostly keywords of stock markets and

products. The economic dictionary contains keywords related to the macroeconomic

trend and policies. Second, the log-transformed number of characters in the posts

related to Finance and Economics topics are aggregated respectively, for each user

within 75 days.
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Figure 3: The left panel: histogram of log-Characters of Finance; The middle panel: his-

togram of log-Characters of Economics; The right panel: histogram of log-Tenure. All the

continuous variables are standardized with mean 0 and variance 1.

Next, we include several personal information as the exogenous nodal covariates.
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The first is the Gender of the user, which is equal to 1 if the user is male. The second

is the geographical information. Specifically, we consider two indicator variables. One

is whether the user is located in Beijing, and the other is whether the user is located

in Shanghai. The last one is the Tenure of the user on the Sina Weibo platform,

which is the time length since the user’s registration with Sina Weibo.
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Figure 4: The Sina Weibo data analysis. The left panel: histogram of in-degrees. The highly

right skewed shape indicates the existence of “super stars” in the network; The right panel:

similar histogram but for out-degrees.

Lastly, we define the adjacency matrix A by the following-followee relationship

among users. The histograms of in- and out-degrees are shown in Figure 4. The

distribution of in-degrees is more skewed than the out-degrees. As one can see, most

users have limited followers (in-degrees), but a few number of users own large number

of followers. They are mostly public social media accounts and celebrities. To eliminate

the “super star” effects in the dataset, the nodes with highest degrees are deleted and

N = 3, 018 nodes are involved in the analysis. The histograms of all the continuous

variables are given in Figure 3, where we standardize all continuous variables with

mean 0 and variance 1. The sample correlations between Yj1 and WYj2 are given in
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Table 4 for 1 ≤ j1, j2 ≤ p, where a positive correlation level could be observed. The

dataset includes about 68.0% male users, 61.5% users located in Beijing and 13.6% in

Shanghai.

We then fit the MSAR model by QMLE and LSE respectively. The estimation

results are summarized in Table 5. For each estimation method, the estimates are

reported and are marked by “*” if the estimate is significant under the level α = 0.05. A

positive intra-activity effect is observed for Weibo posting contents about Finance and

Economics. In addition, a significant positive extra-activity effect is observed from

Finance to Economics, i.e., a user’s posting activities in Economics is positively

related to his/her following friends’ posts in Finance. Lastly, with respect to the nodal

covariates, it is found that the male users are more active in posting activities related

to both Finance and Economics. No significant evidence is observed with regards to

the geographical information and tenure of the user. Lastly, the computational time for

the estimation of LSE is 55 seconds, which is much less than QMLE (i.e., 691 seconds).

5. CONCLUDING REMARKS

In this article, we study two estimators (i.e., QMLE and LSE) of MSAR model

for large scale social networks. Specifically, the technical conditions are derived and

the asymptotic properties are established. Particularly, an extent of heterogeneity for

nodal in-degrees is allowed. Although the QMLE is usually statistically efficiently, it

can be computationally infeasible for large scale social network. In the meanwhile, large

scale social network are typically sparse. This enables us to reduce the computational

cost and propose the LSE. It is proved the LSE is computationally more efficient than

QMLE, by both simulation studies and extensive practical analysis.

To conclude this work, we consider here several interesting topics for future studies.
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First, it is assumed the disturbances of the MSAR model exhibit no heteroskedasticity

among network nodes. However, one could verify that the QMLE and LSE can be

biased when heteroskedasticity exists in the covariance structure of E. In this case, one

might either assume a parametric structure on E, or design certain estimation methods

as the generalized least squares (GLS) estimation or generalized moment methods

(GMM) to deal with the heteroskedasticity (Kelejian and Prucha, 2004; Lin and Lee,

2010; Baltagi and Bresson, 2011; Liu and Saraiva, 2017). It could be an interesting

topic to investigate solutions under the LSE framework. Second, many responses in

the real practice are observed in time series. Therefore, the time dynamics could be

taken into consideration and statistically modeled. Third, it is noteworthy that the

MSAR model requires the responses to be continuous. However, the discrete responses

are frequently encountered in real data analysis, and needs to be further investigated.

Next, one might note that there could be sample selection issue (Heckman, 1976) here

since only part of the network is observed. In practice, it is very rare that the whole

network is available especially the network scale is large. There is a growing interest

of researches to deal with such issues in single-activity network model; see Liu (2013),

Sojourner (2013), Liu et al. (2017) for more discussions. It is important to investigate

the network sample selection issue under the multi-activity network model. Lastly, it is

required by the MSAR model that the dimension of responses (i.e., p) is fixed. While

the dimension of responses in the real practice can be sufficiently high. This could

result in critical issues in both estimation and computation. How to solve this problem

should be a challenging and intriguing topic for the future study.
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APPENDIX A

In Appendix A, we give some basic matrix forms in Appendix A.1 and Appendix

A.2. Next, we give five useful lemmas which will be employed in the rest of the proofs

in Appendix A.3.

Appendix A.1: Asymptotic Covariance of QMLE in (3.2)

In this section, we give the detailed expression of asymptotic covariance matrix in

(3.2). We first give the formula of the asymptotic covariance in terms of some constants.

Then we give the constants definition as follows. Let ΣM
2d = (Σ

M(t1,t2)
2d ) ∈ Rp2×p2 ,

ΣM
2dβ = (Σ

M(t1)
2dβ : 1 ≤ t1 ≤ p2)> ∈ Rp2×pq, ΣM

2β = κβ, ΣM
2e = (Σ

M(t1,t2)
2e ) ∈ Rp2×p2 ,

ΣM
2de = (Σ

M(t1,t2)
2de ) ∈ Rp2×p2 . Then we have

Σ
M(t1,t2)
2d = κaj1j2,k1k2 + κbj1j2,k1k2 + κcj1j2,k1k2 , Σ

M(t1)
2dβ = αj1j2 ∈ Rpq (A.1)

Σ
M(t1,t2)
2e = νaj1j2,k1k2 , Σ

M(t1,t2)
2de = ξaj1j2,k1k2 , (A.2)

for t1 = (j1 − 1)p + j2 (1 ≤ j1, j2 ≤ p) and t2 = (k1 − 1)p + k2 (1 ≤ k1, k2 ≤ p). In

addition, we have

∆M
1d = (Σ

M(t1,t2)
1d ) ∈ Rp2×p2 with ∆

M(t1,t2)
1d = κdj1j2,k1k2 , (A.3)

∆M
1e = (Σ

M(t1,t2)
1e ) ∈ Rp2×p2 with ∆

M(t1,t2)
1e = νbj1j2,k1k2 , (A.4)

∆M
1de = (Σ

M(t1,t2)
1de ) ∈ Rp2×p2 with ∆

M(t1,t2)
1de = ξbj1j2,k1k2 , (A.5)

for t1 = (j1 − 1)p+ j2 (1 ≤ j1, j2 ≤ p) and t2 = (k1 − 1)p+ k2 (1 ≤ k1, k2 ≤ p).

We then give the constants in (A.1) to (A.5). Recall that Σe = cov(εi) and Ωe =

Σ−1e = (ωej1j2) ∈ Rp×p. We next define Gd
j1j2

= (Ω
1/2
e ⊗ IN)(Ij2j1 ⊗W )S−1(Σ

1/2
e ⊗ IN),
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Ud
j1j2

= (Σ
1/2>
e ⊗ IN)(Ij2j1 ⊗W )S−1X̃β, L = {X̃>(Ωe ⊗ IN)(Σ

1/2
e ⊗ IN)}>, and Ge

j1j2
=

−1/2(Σ
1/2>
e ⊗ IN)(Ij1j2 ⊗ IN)(Σ

1/2
e ⊗ IN), where Ij1j2 ∈ Rp×p is a zero matrix with

only the (j1, j2)th element to be 1. Denote ˙̀d
j1j2

(θ) = ∂`(θ)/∂dj1j2 ,
˙̀
β(θ) = ∂`(θ)/∂β,

˙̀e
j1j2

(θ) = ∂`(θ)/∂ωej1j2 . It can be easily verified ˙̀d
j1j2

(θ) = Ẽ>Gd
j1j2
Ẽ + Ẽ>Ud

j1j2
+ cd,

˙̀
β(θ) = L>Ẽ , ˙̀e

j1j2
(θ) = Ẽ>Ge

j1j2
Ẽ + ce, where cd and ce are constants.

As assumed by Condition (C2), the following limits exist and are defined as

N−1L>L→ κβ, N
−1L>Ud

j1j2
→ αj1j2 , (A.6)

N−1tr
(
Gd
j1j2

Gd
k1k2

)
→ κaj1j2,k1k2 , N

−1tr
(
Gd
j1j2

Gd>
k1k2

)
→ κbj1j2,k1k2 , (A.7)

N−1Ud>
j1j2

Ud
k1k2
→ κcj1j2,k1k2 , N

−1δ4tr
{

diag(Gd
j1j2

)diag(Gd
k1k2

)
}
→ κdj1j2,k1k2 , (A.8)

2N−1tr(Ge
j1j2

Ge
k1k2

)→ νaj1j2,k1k2 , N
−1δ4tr

{
diag(Ge

j1j2
)diag(Ge

k1k2
)
}
→ νbj1j2,k1k2 , (A.9)

2N−1tr(Gd
j1j2

Ge
k1k2

)→ ξaj1j2,k1k2 , N
−1δ4tr{diag(Gd

j1j2
)diag(Ge

j1j2
)} → ξbj1j2,k1k2 , (A.10)

as N →∞, where δ4 = κ4 − 3.

Appendix A.2: Matrix Derivatives of LSE

We first summarize the basic matrix forms. Recall that Σe = cov(εi) and Ωe = Σ−1e ,

S = INp − D> ⊗ W , S̃ = (Ωe ⊗ IN)S. Define V = (DΩeD
>) ⊗ (W>W ), then we

have Ω = Ωe ⊗ IN − (DΩe) ⊗ W> − (ΩeD
>) ⊗ W + V . In addition, recall that

m = diag−1(Ω) = {diag(Ωe)⊗ IN + diag(DΩeD
>)⊗ diag(W>W )}−1.

Next, we give the derivatives with respect to the basic matrices as follows,

V d
j1j2

= (Ij1j2ΩeD
> +DΩeIj2j1)⊗ (W>W ) (A.11)

Ωd
j1j2

= −(Ij1j2Ωe)⊗W> − (ΩeIj2j1)⊗W + V d
j1j2

(A.12)

md
j1j2

= −m2diag(V d
j1j2

), Sdj1j2 = −Ij2j1 ⊗W, S̃dj1j2 = −(ΩeIj2j1)⊗W. (A.13)
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md
j1j2k1k2

= 2m3diag(V d
k1k2

)diag(V d
j1j2

)−m2diag(V d
j1j2k1k2

) (A.14)

V d
j1j2k1k2

= (Ij1j2ΩeIk2k1 + Ik1k2ΩeIj2j1)⊗ (W>W ) (A.15)

Ωd
j1j2k1k2

= V d
j1j2k1k2

. (A.16)

Appendix A.3: Five Useful Lemmas

In this section, we give statements of five useful lemmas, i.e., Lemma 2 to Lemma

6. The detailed proofs are given in Section 5 in a separate supplementary material.

Lemma 2. Let {Vi∈ R1 : 1 ≤ i ≤ N} be a set of identically distributed random

variables. Assume that (a) E(Vi) = 0 for 1 ≤ i ≤ N ; (b) E(Vi, Vj) = 0 for any i 6= j;

(c) E(ViVjVk) = 0 for any 1 ≤ i, j, k ≤ N ; (d) E(V 2
i ) = 1 and E(V 4

i ) = κ4, where κ4

is a finite positive constant. Let V = (V1, V2, · · · , VN)> ∈ RN , Q1 = V >M1V + U>1 V ,

and Q2 = V >M2V +U>2 V , where M1 = (m1,ij) ∈ RN×N and M2 = (m2,ij) ∈ RN×N are

N ×N dimensional matrices, U1, U2 ∈ RN are N-dimensional vectors. We then have

cov(Q1, Q2) = tr(M1M
>
2 )+tr(M1M2)+(κ4−3)tr

{
diag(M1)diag(M2)

}
+U>1 U2. (A.17)

Lemma 3. Define |M |e = (|mij|) for any arbitrary M . Further define the notation

M1 4 M2 if m
(1)
ij ≤ m

(2)
ij , where M1 = (m

(1)
ij ) ∈ Rn1×n2 and M2 = (m

(2)
ij ) ∈ Rn1×n2 are

two arbitrary matrices. Let 1n be the n-dimensional vector with all elements to be 1.

Then we have the following results.

(a) Assume |λ1(D)| < 1. Then there exists a constant cd > 0, such that

|Dm|e 4 cdp
2|λ1(D)|m max{m, p}p1p1>p . (A.18)

(b) Assume condition (C1). Let Γ ∈ Rp×p be an arbitrary p × p dimensional matrix.
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Recall S = INp −D> ⊗W , then we have

|S−1|e 4 c0(1p1
>
p )⊗

(
W
)
, (A.19)

|(Γ⊗W q)S−1|e 4 cq(1p1
>
p )⊗

(
Wq

)
, (A.20)

where W =
∑K

m=0W
m + 1Nπ

> with K being a finite integer, Wq = W qW, π is defined

in condition (C1.1), c0 = cdp
2(Kp+cλcw), cλ =

∑∞
m=p |λ1(D)|m−pmp <∞, cq = cγp

qc0,

cγ = ‖Γ‖∞, and cw > 1 is a constant.

(c) For 0 ≤ q1, · · · , q4 ≤ 1, and finite positive integers r1, r2, r3, and q, we have

λmax(W
>W ) = O{(logN)2}, λmax(W>q Wq) = O(∆N), (A.21)

N−2tr
{

(W r1W>r2)r3
}
→ 0, (A.22)

N−2tr
{

(W>W )q1(W>q Wq)
q2(W>W )q3(W>q Wq)

q4
}
→ 0, (A.23)

as N → ∞, where ∆N = (logN)2(K+q) if δ = 1/2 and ∆N = N1/2−δ if 0 < δ < 1/2,

and δ here is the positive constant defined in condition (C1.1).

(d) For the basic matrices given in Appendix A.1, we have the upper bound as follows

|V d
j1j2
|e 4 c1v(1p1

>
p )⊗ (W>W ), (A.24)

|V d
j1j2k1k2

|e = |Ωd
j1j2k1k2

|e 4 c2v(1p1
>
p )⊗ (W>W ), (A.25)

|m|e 4 c0mINp, |md
j1j2
|e 4 c1m(1p1

>
p )⊗ (W>W ), (A.26)

|md
j1j2k1k2

|e 4 c2m(1p1
>
p )⊗

{
W>W + (W>W )2

}
, (A.27)

|S|e 4 INp + c1s(1p1
>
p )⊗W, |S̃|e 4 c2s(1p1

>
p )⊗ (IN +W ), (A.28)

|Sdj1j2|e 4 c3s(1p1
>
p )⊗W, |S̃dj1j2 |e 4 c4s(1p1

>
p )⊗W. (A.29)
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In addition, we have the upper bound for the matrices defined in Section

|M1|e 4 c1M(1p1
>
p )⊗ (IN +W>), (A.30)

|M2,j1j2|e 4 c2M(1p1
>
p )⊗ W̃, |M3,j1j2|e 4 c2M(1p1

>
p )⊗ W̃, (A.31)

|Mj1j2|e 4 c3M(1p1
>
p )⊗ (W̃ +W>W̃), (A.32)

|M>
1 M3,j1j2|e 4 c3M(1p1

>
p )⊗ (W̃ +W>W̃), (A.33)

where W̃ = W> +W>W +W>WW> +W>W1. Furthermore, we have

λmax(W̃>W̃) = O
{

(logN)6N1/2−δ}. (A.34)

Lemma 4. Suppose E = (E1, · · · , Ep) = (εik) ∈ RN×p and E(Ek, El) = σklIN . In

addition, let X = (X1, · · · , Xq) = (Xik) ∈ RN×q and X̃ = Ip ⊗ X. Assume for any

β ∈ Rpq and M ∈ R(Np)×(Np), we have |N−1(X̃β)>M(X̃β)| ≤ cβN
−1tr(M) as N →∞,

where cβ is a positive constant only related to β. Moreover, assume maxk E(ε4ik) ≤ κ4,

where κ4 is a finite positive constant. Let

Q =

p∑
k=1

p∑
l=1

E>k MklEl +
s∑

n=1

p∑
k=1

p∑
l=1

E>k Un,kl(Xβn,l),

where Mkl = (Mkl,ij) ∈ RN×N , Un,kl ∈ RN×N , βn,l ∈ Rq, and
∑

k,l σkltr(Mkl) = 0,

where 1 ≤ k, l ≤ p. Let M = (|Mkl|e : 1 ≤ k, l ≤ p) ∈ R(Np)×(Np) and Un = (|Un,kl|e :

1 ≤ k ≤ p, 1 ≤ l ≤ q) ∈ R(Np)×(Nq). Then we have N−1/2Q→d N(0, σ2
1) if

N−2tr
{
MM>MM>

}
→ 0, (A.35)

N−1λ2max(UnU>n )→ 0, (A.36)

as N →∞, where σ2
1 = limN→∞N

−1var(Q).
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Lemma 5. Let ῭(θ) = ∂2`(θ)/∂θ∂θ> be the second order derivative of Q(θ) with respect

to θ. If we assume the same conditions in Theorem 1, then −N−1 ῭(θ)→p ΣM
2 .

Lemma 6. Let Q̈(γ) = ∂2Q(γ)/∂γ∂γ> be the second order derivative of Q(γ) with

respect to γ. If we assume the same conditions in Theorem 4, then N−1Q̈(γ)→p ΣL
2 .

APPENDIX B

In Appendix B, we first give the proof of Theorem 1 Then we give the proof of

Theorem 4 in Appendix B.2.

Appendix B.1: Proof of Theorem 1

The proof will be accomplished in the following two steps. In the first step, we prove

θ̂M is
√
N -consistent. Next, in the second step, we show that θ̂M is asymptotically

normal.

Step 1. To establish the consistency result, we follow Fan and Li (2001) to show

that for any ε > 0, there exists a constant C > 0 such that

lim
N→∞

P
{

sup
‖u‖=C

`(θ +N−1/2u) < `(θ)
}
> 1− ε. (B.1)

Then (B.1) implies that with probability at least 1−ε, there exists a local optimizer θ̂M

in the ball {θ+N−1/2uC : ‖u‖ ≤ 1}. As a result, we have ‖θ̂M − θ‖ = Op(N
−1/2). Let

˙̀(θ) = ∂`(θ)/∂θ ∈ Rnpq and ῭(θ) = ∂2`(θ)/∂θ∂θ> ∈ Rnpq×npq be the first and second

order derivatives of `(θ) respectively, where npq = p2 + pq + p(p + 1)/2. To this end,

we apply Taylor’s expansion and obtain that

sup
‖u‖=1

{
`(θ +N−1/2uC)− `(θ)

}
= sup
‖u‖=1

{
CN−1/2 ˙̀(θ)>u+ 2−1C2N−1u> ῭(θ)u+ op(1)

}
31



≤ C‖N−1/2 ˙̀(θ)‖ − 2−1C2λmin

{
−N−1 ῭(θ)

}
+ op(1). (B.2)

We next prove (B.2) is asymptotically negative with probability 1. To this end, we

consider ˙̀(θ) and ῭(θ) separately.

First recall ˙̀d
j1j2

(θ) = ∂`(θ)/∂dj1j2 ,
˙̀
β(θ) = ∂`(θ)/∂β, ˙̀e

j1j2
(θ) = ∂`(θ)/∂ωej1j2 de-

fined in Appendix A.1. One could verify that ˙̀(θ) = ( ˙̀d>(θ), ˙̀>
β (θ), ˙̀e>(θ))>, where

˙̀d(θ) = ∂`(θ)/∂D ∈ Rp2 , ˙̀e(θ) = ∂`(θ)/∂ξe ∈ Rp(p+1)/2. It can be calculated, for

1 ≤ j1, j2 ≤ p,

N−1/2 ˙̀d
j1j2

(θ) =N−1/2
[
E>(Ωe ⊗ IN)(Ij2j1 ⊗W )Y − tr

{
S−1(Ij2j1 ⊗W )

}]
,

N−1/2 ˙̀
β(θ) =N−1/2X̃>(Ωe ⊗ IN)E ,

N−1/2 ˙̀e
j1j2

(θ) =2−1N−1/2
{
NΣe,j1j2 − E>(Ij1j2 ⊗ IN)E

}
,

where E = SY−X̃β, Ij1j2 = Ij1j2 +Ij2j1 if j1 6= j2, and Ijj = Ijj. Consequently, we have

E{N−1/2 ˙̀d
j1j2

(θ)} = 0 due to that E{E>(Ωe⊗ IN)(Ij2j1 ⊗W )Y} = tr{S−1(Ij2j1 ⊗W )},

E{ ˙̀
β(θ)} = 0, and E{ ˙̀e

j1j2
(θ)} = 0 due to that E{E>(Ij1j2 ⊗ IN)E} = Ntr(Ij1j2Σe) =

NΣe,j1j2 . It can be verified ˙̀d
j1j2

(θ) = Ẽ>Gd
j1j2
Ẽ + Ẽ>Ud

j1j2
+ cd, ˙̀

β(θ) = L>Ẽ , ˙̀e
j1j2

(θ) =

−Ẽ>Ge
j1j2
Ẽ + ce, where Gd

j1j2
, Ud

j1j2
, L, and Ge

j1j2
are defined in Part I of Appendix

A.1, and cd and ce are constants. Therefore, by Lemma 2, it can be easily verified

− limN−1cov( ˙̀(θ))→ ΣM
1 , where the details are omitted here. This suggests that the

coefficient of the linear term in (B.2) is Op(1). In addition, we have N−1 ῭(θ)→p ΣM
2 by

Lemma 5 in supplementary material. This indicates λmin{−N−1 ῭(θ)} →p λmin(ΣM
2 ) >

0 asymptotically. Therefore, the coefficient for C2 in (B.2) is asymptotically positive.

Consequently, by choosing sufficiently large C, (B.2) is negative with probability 1 as

N →∞, thus (B.2) holds.

Step 2. By the first step of proof, we know that θ̂M is
√
N -consistent. Therefore,
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the Taylor’s expansion technique can be applied to obtain the following asymptotic

approximation
√
N(θ̂M − θ) =

{
N−1 ῭(θ∗)

}−1{
N−1/2 ˙̀(θ)

}
, (B.3)

where θ∗ is between θ and θ̂M . By the proof in the first step, we know that−N−1 ῭(θ∗)→p

ΣM
2 .

We next prove that N−1/2 ˙̀(θ) →d N(0,ΣM
1 ). This suffices to show that for any

η = (η>d , η
>
β , η

>
e )> ∈ Rp2+pq+p(p+1)/2, we have N−1/2η> ˙̀(θ) →d N(0, η>ΣM

1 η), where

ηd = (ηd1, · · · , ηd,p2)> ∈ Rp2 , ηβ = (ηβ1, · · · , ηβ,pq)> ∈ Rpq, ηe = (ηe1, · · · , ηe,p(p+1)/2)
> ∈

Rp(p+1)/2. It can be verified that η> ˙̀(θ) = Ẽ>GηẼ + Ẽ>U1η(X̃β) + Ẽ>U2η(X̃ηβ) + cη,

where cη is a constant, Gη =
∑p

j1,j2=1 η
d
(j1−1)p+j2G

d
j1j2

+
∑p

j2≤j1 η
e
(j1−1)p+j2G

e
j1j2

, U1η =∑p
j1,j2=1 η

d
(j1−1)p+j2(Σ

1/2>
e ⊗ IN)(Ij2j1 ⊗ W )S−1, U2η = Ω

1/2
e ⊗ IN . It can be derived

|Gd
j1j2
|e 4 cg(1p1

>
p )⊗W1, |Ge

j1j2
| 4 ce(1p1

>
p )⊗IN , |U1η|e 4 c1η(1p1

>
p )⊗W1, where cg, ce,

and c1η are finite constants. By Lemma 4, it suffices to show N−2tr
{

(Gd>
j1j2

Gd
j1j2

)2
}
→ 0,

N−2tr
{

(Ge>
j1j2

Ge
j1j2

)2
}
→ 0, and N−1λ2max{|U1η|>e |U1η|e} → 0, which can be implied by

(A.21) and (A.23) of Lemma 3 respectively. This completes the proof of Theorem 1.

Appendix B.2: Proof of Theorem 4

Following the previous procedure for the proof of QMLE, we study the asymptotic

properties in two steps. In the first step, γ̂L is proved to be
√
N -consistent. Secondly,

the asymptotic normality of γ̂L is established.

Step 1. Similarly, we follow the technique of Fan and Li (2001) to prove that, for

any ε > 0, there exists a constant 0 < C <∞, such that

lim
N→∞

P
{

inf
‖u‖=C

Q(γ +N−1/2u) > Q(γ)
}
≥ 1− ε. (B.4)
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Therefore, it is implied that with probability at least 1 − ε, there is a local minimiz-

er γ̂L in the ball {γ + N−1/2uC : ‖u‖ ≤ 1}. Let Q̇(γ) = ∂Q(γ)/∂γ ∈ Rmpq and

Q̈(γ) = ∂2Q(γ)/∂γ∂γ> ∈ Rmpq×mpq be the first and second order derivatives of Q(γ)

respectively, where mpq = p2 + pq. In order to obtain (B.4), we conduct Taylor’s

expansion as

inf
‖u‖=C

{
Q(γ +N−1/2u)−Q(γ)

}
= CN−1/2Q̇(γ)>u+ 2−1C2N−1u>Q̈(γ)u+ op(1)

≥ 2−1C2λmin{N−1Q̈(γ)} −N−1/2‖Q̇(γ)‖C + op(1). (B.5)

We next consider the terms Q̇(γ) and Q̈(γ) respectively. First, it can be concluded

limN→∞N
−1cov{Q̇(γ), Q̇(γ)} = ΣL

1 by Lemma 2. This implies the coefficient for the

linear term of C (i.e., N−1/2Q̇(γ)) is Op(1). Next, by Lemma 6, we have N−1Q̈(γ)→p

ΣL
2 , which indicates λmin{N−1Q̈(γ)} →p λmin(ΣL

2 ) > 0 asymptotically. Therefore,

the coefficient for C2 in (B.5) is asymptotically positive. Consequently, by choosing

sufficiently large C, (B.5) is positive with probability 1 as N →∞, thus (B.4) holds.

Step 2. It has been proved γ̂L is
√
N -consistent. Then, we are enabled to apply

the technique of Taylor’s expansion as

√
N(γ̂L − γ) = {N−1Q̈(γ∗)}−1{N−1/2Q̇(γ)}, (B.6)

where γ∗ is between γ and γ̂L. Together with the conclusion N−1Q̈(γ) →p ΣL
2 proved

in Lemma 6, we have N−1Q̈(γ∗)→p ΣL
2 .

We next prove that N−1/2Q̇(γ) →d N(0mpq ,Σ
L
1 ) as N → ∞. It suffices to show

that for any η = (η>d , η
>
β )> ∈ Rp2+pq, we have N−1/2η>Q̇(γ) →d N(0, η>ΣL

1 η), where
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ηd = (ηd1, · · · , ηd,p2)> ∈ Rp2 and ηβ = (ηβ1, · · · , ηβ,pq)> ∈ Rpq. It can be derived

η>Q̇(γ) = Ẽ>M1ηẼ + Ẽ>M2η(X̃β) + Ẽ>M3(X̃ηβ),

whereM1η = 2
∑p

j1,j2=1 ηd,(j1−1)p+j2Mj1j2 , M2η = 2
∑p

j1,j2=1 ηd,(j1−1)p+j2M
>
1 M3,j1j2 , M3 =

−2M>
1 mS̃

>. By Lemma 4, it suffices to show

N−2tr(|M1η|e|M1η|>e |M1η|e|M1η|>e )→ 0,

N−1λ2max(|M2η|e|M2η|>e )→ 0, N−1λ2max(|M3|e|M3|>e )→ 0,

as N → ∞. Note that the upper bound of each equation is established in (A.30)–

(A.33) in Lemma 3. Next, by applying (A.22)–(A.21) of Lemma 3, the desired results

can be obtained. This completes the proof.
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Table 4: The sample correlation between Yj1 and WYj2 for 1 ≤ j1, j2 ≤ p.

Finance (Y1) Economics (Y2)

Finance (WY1) 0.265 0.259

Economics (WY2) 0.256 0.260

Table 5: The detailed MSAR analysis results for the Sina Weibo dataset. For each
estimation method (i.e, MLE and LSE), the estimates are reported, and “*” denotes
that the estimates are significant under the significance level 0.05.

QMLE Estimation LSE Estimation

Finance Economics Finance Economics

Finance (WY1) 0.305 * 0.209 * 0.278 * 0.194 *

Economics (WY2) 0.098 0.196 * 0.110 0.196 *

Intercept -0.291 * -0.273 * -0.473 * -0.455 *

Gender 0.303 * 0.296 * 0.304 * 0.297 *

Beijing -0.027 -0.043 -0.041 -0.056

Shanghai -0.018 -0.040 -0.002 -0.027

Tenure -0.021 -0.014 -0.017 -0.011
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