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Information diffusion refers to the process about pass-
ing certain information from one subject to another. It is a
typical and critical phenomenon observed in large scale so-
cial networks. To statistically model such a phenomenon, a
network diffusion model is proposed and studied. The diffu-
sion process is then investigated under the modeling frame-
work from both the short term and long term perspectives.
To estimate the model, a maximum likelihood estimator
and a moment estimator are proposed, whose asymptotic
properties are further established. The resulting estimators
are manifested to have a reliable finite sample performance
through a number of numerical studies. Lastly, the diffusion
of earthquake news on Sina Weibo is analyzed to illustrate
the practical usefulness.
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1. INTRODUCTION

Diffusion refers to the dynamics concerning passing cer-
tain information (or action) from one subject to another
(Bass, 1969). Particularly, network diffusion refers to the
diffusion occurred on a social network. According to data
published by GlobalWebIndex (www.globalwebindex.net),
internet users spend 135 minutes every day on social net-
working. It is conceivable that internet users are now under
great exposure to messages posted by others. On social net-
work platform like Twitter, users are influenced by those
messages from day to day, and they might re-publish them
to others. Empirical study conducted by Zhou et al. (2010)
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shows that the number of tweets concerning a specific event
increases gradually and dies down as the time goes by. The
network diffusion process, which is induced by network dif-
fusion, can be mathematically represented as follows.

First, define a network adjacency matrix A = (ai1i2) ∈
R

N×N to describe a static network structure with N nodes,
where ai1i2 = 1 if node i1 follows i2, and ai1i2 = 0 other-
wise. Following the convention in Zhu et al. (2017), we do
not allow self-connected edges, i.e., aii = 0 for 1 ≤ i ≤ N .
Next, at a given time point t (1 ≤ t ≤ T ), a binary variable
Yit ∈ {0, 1} is recorded for each node i. Define Yit = 1 if node
i responds to certain information stimulus at time point t,
and Yit = 0 otherwise. Take Twitter-type social network as
an example: node i might be exposed to a tweet (i.e., a infor-
mation stimulus) from its followees. Subsequently, the node
should decide to re-tweet (i.e., Yit = 1) or not (i.e., Yit = 0).
Define Yt = (Y1t, · · · , YNt)

� ∈ R
N to be the response vec-

tor at time t. This leads to the network diffusion process
{Yt : 1 ≤ t ≤ T}. The objective of this work is to develop a
statistical model to describe the underlying dynamics for Yt.

It is obvious that diffusion is a classical problem of fun-
damental importance. Accordingly, various diffusion mod-
els have been developed. In the seminal work of Bass
(1969), potential customers are classified into innovators
and imitators. This leads to an elegant differential equa-
tion with an analytical solution. In addition, various es-
timation methods have been discussed for Bass model
(Schmittlein and Mahajan, 1982; Srinivasan and Mason,
1986; Kou et al., 2012). The Bass model and its extensions
have a large amount of applications in marketing (Goswami,
2001; Van den Bulte and Stremersch, 2004; Rogers, 2010).
Despite its popularity, Bass model and its extensions are
based on aggregate data. As an alternative, Jun and Park
(1999) and Niu (2002) proposed diffusion models at indi-
vidual level to better understand diffusion process. Later,
Yang and Leskovec (2010) and Du et al. (2014) studied the
influence function based model where influence function is
estimated for each node. Gao et al. (2017) used embedding
model for information diffusion prediction.

Nevertheless, the models mentioned above either ignore
or bypass network structure. How to include network struc-
ture in diffusion model is still open and widely studied.
Independent cascade model (Goldenberg, Libai and Muller,
2001) is one of the earliest models incorporating ex-
plicit network structure. It assumes each activated node
has a chance to activate its neighbors in each step.
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Katona, Zubcsek and Sarvary (2011) used complementary
log-log link function to formulate adoption probability.
Wang, Wang and Xu (2012) modeled temporal and spatial
characteristics of information by diffusive logistic equation.
In recent works, various relationships among users and infor-
mation are introduced into diffusion models. For example,
Li et al. (2017) studied rational agents assumption in infor-
mation diffusion. Zhang et al. (2018) incorporated interac-
tions among users and contagions into a unified framework.

However, most previous models assume that a node will
stay active once it is activated (Yit = 1 if Yi(t−1) = 1 in dis-
crete case). Although this assumption is reasonable in the
field of marketing, it is too restrictive to study the dynamic
of an event. This motivates us to propose an interesting net-
work diffusion model, which enables us to understand the
diffusion process with network structure from both aggre-
gate and individual perspectives.

Furthermore, the process is also investigated both at the
very beginning (i.e., short term analysis) and at the end (i.e.,
long term analysis) of the diffusion. Moreover, because the
model is specified at individual level, parameter estimation
can be conducted at a cross-sectional level. This enables us
to estimate the model at very early stage of the diffusion
process. A maximum likelihood estimator (MLE) and a mo-
ment estimator (ME) are then proposed. The asymptotic
properties are studied and their finite sample performances
are compared by extensive numerical studies.

We would like to summarize our contributions to the liter-
ature in the following three regards. First, we study an indi-
vidualized network diffusion model, which takes simple form
and embeds the known network structure information. Sec-
ond, two estimation approaches are investigated and com-
pared both in theory and computational side. Third, we pro-
vide abundant theoretical justifications for the proposed net-
work diffusion model and study the corresponding asymp-
totic properties. Although the proposed network diffusion
model framework is parsimonious, we would like to empha-
size that the contribution of this work is mainly on the the-
oretical side and abundant extensions could be investigated.

The rest of this article is organized as follows. Section 2
introduces the network diffusion model, where the short
term and long term analysis are conducted subsequently.
In Section 3 we propose two types of estimators and their
corresponding asymptotic properties are investigated. Ex-
tensive numerical studies and a Sina Weibo data analysis
are given in Section 4. The article is concluded with a brief
discussion in Section 5. All technical details are left in the
Appendix.

2. NETWORK DIFFUSION MODEL

2.1 Model and notations

Recall that N is the network size and Yit is the binary
response collected from the ith subject at time point t. De-
fine Ft = {Yt, · · · ,Y0} be a set of the historical information

up to time point t. We further assume that the response
variable Yit given Ft−1 is fully determined by Yt−1 as

(1) P (Yit = 1|Ft−1) = pit = ρn−1
i

N∑
j=1

aijYj(t−1),

where ni =
∑

j �=i aij is the total number of nodes
that i follows, and it is referred to as nodal out-degree
(Wasserman et al., 1994). For a fixed t, different Yits are
assumed to be independent given Ft−1. As one can see,

the quantity n−1
i

∑N
j=1 aijYj(t−1) is the average stimulus re-

ceived by i from the nodes it follows at t− 1. Its impact on
Yit is quantified by ρ, which is referred to as network diffu-
sion effect. In order to ensure (1) to be a valid probability
measure, a sufficient condition is 0 ≤ ρ ≤ 1. Practically, the
estimated network diffusion effect is usually very small; see
Section 4.3 for the empirical evidence. Therefore, this as-
sumption is easy to satisfy. To sum up, model (1) specifies
the network diffusion model. It explicitly takes the network
structure into consideration. By model (1), we know that
the information stimulus, received at time point t, is in-
duced by Yt−1. This information stimulus passes through
the network, and eventually affects whether Yit = 1 or 0 for
1 ≤ i ≤ N .

For convenience, define Pt = (p1t, · · · , pNt)
� ∈ R

N .
Given Ft−1, Yt follows multivariate Bernoulli distribution
with conditional probability Pt, which is defined as

(2) Pt = ρWYt−1,

where W = (wij) = diag{n−1
1 , · · · , n−1

N }A is the row-
normalized adjacency matrix. Therefore, a weighted adja-
cency matrix is involved here in our network diffusion model,
where the weights are related to the out-degrees of the net-
work nodes (Zhu et al., 2017). As a result, compared to
a node following ten friends, a node follows ten thousand
friends will receive less influence from its following friends.
In this work, we treat the weighting matrix to be static.
While in practice, the weighting matrix could be in a more
general form, e.g., in dynamic forms. We would like to leave
it as an important future study direction to the proposed
model.

The network diffusion model (1) is given at an indi-
vidual level. However, on some occasions it is of particu-
lar interest to analyze the network diffusion at an aggre-
gate level. For a given time point t, the total amount of
responses to the information stimulus is given by 1�

Yt,
where 1 = (1, · · · , 1)� ∈ R

N . For convenience, we refer to
IDS(t) = 1�

Yt as the incremental diffusion size (IDS). It is
then of interest to theoretically investigate the behavior of
IDS(t) in both short and long terms, which is discussed in
the following two subsections respectively.

2.2 Short term analysis of IDS

In this subsection, we consider short term analysis of IDS.
Assume Ft is given, we then investigate the probabilistic
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characteristics of both IDS(t + 1) and IDS(t + 2). Define

E∗(·) = E(·|Ft) and var∗(·) = var(·|Ft). We then analyze

the IDS in one step and two steps ahead respectively as

follows.

2.2.1 One step ahead analysis

Note that pi(t+1) = E∗(Yi(t+1)) = ρw�
i Yt, where wi =

(wi1, · · · , wiN )� ∈ R
N is the ith row vector of W . We then

have

E∗
{
IDS (t+ 1)

}
=

N∑
i=1

ρw�
i Yt = ρ1�WYt

= ρ

N∑
j=1

Yjt

( N∑
i=1

wij

)
.

(3)

By (3), we know that the expected value of IDS(t + 1) de-

pends on two important factors. First, it depends on Yjts,

i.e., the response of node j at time t for 1 ≤ j ≤ N .

The more nodes respond to the information stimulus (i.e.,

Yjt = 1), the more likely to observe a large expected value

for IDS(t + 1). Second, IDS(t + 1) depends on the quan-

tity
∑N

i=1 wij =
∑N

i=1 n
−1
i aij . Given a response node j (i.e.,

Yjt = 1), the more followers j has (i.e.,
∑N

i=1 aij), it is more

likely to have a large value for
∑

i wij . The value could be

even larger if the followers are loyal with small nodal out-

degree (i.e., node i satisfying aij = 1 with small ni). We can

define the incremental value of E∗{IDS(t+1)} with respect

to IDS(t) as

Δ(t+ 1) = E∗
{
IDS(t+ 1)

}
− IDS(t)

=

N∑
j=1

Yjt

(
ρ

N∑
i=1

wij − 1
)
.

(4)

By (4), we know that IDS(t+ 1) is more likely to be larger

than IDS(t) if
∑

i wij is large, for many js with Yjt = 1. This

implies that there are many famous users (i.e., users with

large amount of loyal followers) who respond at time t. In

this case, the diffusion process is likely to expand. Otherwise,

it is expected to shrink.

We next consider the conditional variance of IDS(t+ 1).

Conditional on Ft, Yi(t+1)s are independent. Accordingly,

we have

(5) var∗
{
IDS(t+ 1)

}
=

N∑
i=1

Vi(t+1),

where Vi(t+1) = pi(t+1)(1 − pi(t+1)). In practice, the condi-

tional probability that node i will respond (i.e., pi(t+1)) is

typically small and close to 0. Furthermore, var∗{IDS(t+1)}

could be expanded as

var∗
{
IDS(t+ 1)

}
=

N∑
i=1

pi(t+1) −
N∑
i=1

p2i(t+1)

= E∗
{
IDS(t+ 1)

}
−

N∑
i=1

p2i(t+1).

(6)

This suggests that the magnitude of the conditional vari-
ance of IDS(t + 1) is mainly determined by its conditional
mean. Based on the above results, we then conduct the the
two steps analysis of IDS subsequently.

2.2.2 Two steps ahead analysis

Similarly, we can evaluate the conditional mean and vari-
ance for IDS(t+ 2). This leads to

(7) E∗
{
IDS(t+ 2)

}
=

N∑
i=1

p
(2)
it

and var∗{IDS(t + 2)} =
∑N

i=1 Vi(t+2), where p
(2)
it =∑N

j=1 ρ
2wijw

�
j Yt = ρ2w�

i WYt, Vi(t+2) = p
(2)
it (1 − p

(2)
it ) +

ρ2
∑

1≤j �=k≤N wjiwkiVi(t+1). We then have

(8)

var∗
{
IDS(t+ 2)

}
= E∗

{
IDS(t+ 2)

}
−

N∑
i=1

(
p
(2)
it

)2

+ ρ2
N∑
i=1

∑
1≤j �=k≤N

wjiwkipi(t+1)

(
1− pi(t+1)

)
.

The proof of (8) is given in Appendix A.1 Comparing (8)
with (6), we find that the conditional variance of IDS(t+2)
could be much larger than its conditional expectation. While
in the previous analysis, the conditional variance of IDS(t+
1) is mainly determined by its conditional expectation.
This is because of the quantity

∑
i

∑
j �=k wjiwkipi(t+1)(1 −

pi(t+1)), which could be large if there exists one or multiple
nodes i such that

∑
j �=k wjiwki are extremely large. This

might happen if i is a node with a huge amount of followers
(e.g., a celebrity). To summarize, the comparison between
(6) and (8) suggests that an accurate prediction of IDS(t+2)
is substantially more difficult than that of IDS(t+ 1). This
implies that a reliable long-term inference for IDS(t) is the-
oretically difficult.

2.3 Long term analysis of IDS

Even though it is difficult to access an accurate long-term
forecasting, it does not rule out the possibility to make some
reliable judgment for its primary trend. The primary trend
mainly concerns about whether the diffusion process should:
(1) gradually shrink and eventually disappear, or (2) main-
tain at a relatively stable level. To this end, we mainly con-
cern the mean of IDS(t) and study its relationship with t.
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To facilitate the discussion, we treat Y0 as fixed in the fol-
lowing. Define EIDS(t) to be the expectation of IDS(t). We
then have EIDS(t) = E(1�

Yt) = ρt1�W t
Y0. Note that

W can be viewed as a transition probability matrix of a
Markov chain, whose state space is defined as the set of all
the nodes in the network, i.e., {1, · · · , N}. We further as-
sume that the Markov chain is irreducible, which implies
that two arbitrary nodes in the network can always be con-
nected with a path of finite length. In real life, irreducibility
holds commonly according to six degrees of separation the-
ory (Watts and Strogatz, 1998). If irreducibility is not sat-
isfied, this indicates that the network could be divided into
several isolated parts, and models could be built separately
on each part. Under the assumption of irreducibility, the
classical Markov chain theory states that there should ex-
ist a stationary distribution π = (π1, · · · , πN )� ∈ R

N such
that π�W = π� and W t → 1π� as t → ∞. We then study
the limit and convergence rate of EIDS(t) respectively as
follows. First, we investigate the limit of EIDS(t) as t → ∞.
The main results are given in the following theorem.

Theorem 1. Assume the Markov chain associated with
W is irreducible and aperiodic. Then as t → ∞, (1)
EIDS(t) →p 0, if 0 ≤ ρ < 1; and (2) EIDS(t) →p Nπ�

Y0,
if ρ = 1.

The proof of Theorem 1 is given in Appendix A.2. By
Theorem 1, we know that the long-term primary trend of a
network diffusion process is mainly determined by its net-
work diffusion effect (i.e., ρ). EIDS(t) shrinks towards 0 (i.e.
the diffusion process eventually disappear) if 0 ≤ ρ < 1,
while it reaches a quantity if ρ = 1.

Next, we investigate the rate that EIDS(t) converges to-
wards its limit EIDS∗ = limt→∞ EIDS(t). It helps us to
understand how long the diffusion process will reach its
stable status or disappear. This is important for a net-
work platform operator, since the survival time of infor-
mation determines the activeness of the network. To this
end, write the distance between EIDS(t) and EIDS∗ as
d(t) = |EIDS(t) − EIDS∗|. Accordingly, we can define the
ε-convergence time as t(ε) = min{t : d(t) ≤ ε}. It can be
seen t(ε) characterizes the minimum time which is required
to make the distance between EIDS(t) and EIDS∗ to be less
than ε. In the long term analysis we focus on a symmet-
ric network structure (i.e., A = A�) to facilitate theoretical
discussions as follows.

Theorem 2. Assume the adjacency matrix A is symmet-
ric and let W = (wij) = diag{n−1

1 , · · · , n−1
N }A be the row-

normalized adjacency matrix. Define λ∗ = max{|λi| : |λi| �=
1}, where λi is the ith eigenvalue of W . Then we have

(9) t(ε) ≤ 1

1− λ∗ − log ρ
log

2N

εγmin
,

where γmin = min{ni/
∑

j nj : 1 ≤ i ≤ N}.

The proof of Theorem 2 is given in Appendix A.3. Al-
though the symmetric assumption on A seems to be restric-
tive, in practice, a lot of famous social networks (e.g., Face-
book, WeChat) satisfy this assumption. For instance, on so-
cial network platforms like Facebook, relationship is built
only when two nodes are mutually followed with each other,
which yields a symmetric network relationship.

From Theorem 2, it can be concluded that the upper
bound of ε-convergence time is mainly determined by the fol-
lowing four factors. They are, respectively, the network diffu-
sion effect ρ, the network size N , the spectral gap of W (i.e.,
1−λ∗), and γmin. Firstly, by (9), the upper bound increases
as ρ increases. Thus, smaller network diffusion effect leads
to faster convergence speed for EIDS(t). Secondly, the up-
per bound is smaller when network size N is small. This im-
plies that the convergence speed is faster for small networks.
Thirdly, as demonstrated by Banerjee, Carlin and Gelfand
(2014), it holds that maxi |λi| = 1. Therefore one must have
the spectral gap 1−λ∗ > 0. As suggested by (9), it will result
in faster convergence of EIDS(t) to its limit. Lastly, as γmin

gets larger, a faster convergence speed could be achieved.

Remark. In practice, typically we have 0 ≤ ρ < 1, which
implies that the network diffusion process will disappear
eventually. Theorem 2 provides some insights that how fast
the diffusion process will disappear. In practice, it provides
a rough estimation about the disappearing time of the dif-
fusion process, which helps the practitioners to make quick
decisions in the early stage when the diffusion occurs. Fur-
thermore, We note that the disappearing speed of the dif-
fusion process is related to several factors as we have men-
tioned above. As a result, if a practitioner would like to
intervene the diffusion process, he/she may need to pay at-
tention to the above factors. For instance, in the context
of new product releasing, the practitioners may pursue to
lengthen the diffusion process as much as possible. There-
fore, he is suggested to (1) release the product in a large so-
cial network platform; (2) try to make more users to repost
relevant news and information; (3) increase the connectivity
of the network structure (i.e., lower spectral gaps) and try
to introduce more super stars (i.e., make γmin to be lower)
in the network. On the contrary, in the context of epidemi-
ology, the practitioners may want to shorter the diffusion
process. Therefore, he is advised to intervene the diffusion
process in an opposite way.

3. PARAMETER ESTIMATION

In this section, we discuss the parameter estimation
methods for the network diffusion model (1). Two types of
estimators are studied. The first one is the MLE and the
second one is the ME. We would like to remark that in this
section we do not assume the adjacency matrix A to be
symmetric.
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We first discuss the maximum likelihood estimation
method. To this end, we first write the log-likelihood func-
tion �(ρ) as

�(ρ) =

T∑
t=1

N∑
i=1

I(w�
i Yt−1 > 0)

{
Yit log(ρw

�
i Yt−1)+

(1− Yit) log(1− ρw�
i Yt−1)

}
,

(10)

where I(·) is the indicator function. Then, the MLE could
be obtained as ρ̂mle = argmaxρ�(ρ).

We then investigate the asymptotic properties for MLE.
First, we assume that 0 ≤ ρ < 1, since this is the most
realistic situation where the diffusion process disappear
eventually. In this case, we have EIDS(t) → 0. This sug-
gests that the number of observed responses is limited as
t → ∞. As a consequence, the asymptotic theory should
be established with a bounded T . In such a situation, as
long as the expected number of potential responses (i.e.,∑T

t=1 E(Yt) =
∑T

t=1 ρ
t−11�W t

Y0) is large, the MLE is ex-
pected to be consistent. This motivates us to define N∗ =∑T

t=1 ρ
t−11�W t

Y0 as the effective sample size and assume
N∗ → ∞ as N → ∞. We first derive the asymptotic prop-
erties for ρ̂mle as follows.

Theorem 3. Let Zi =
∑T−1

t=0

{
ρ(1− ρw�

i Yt)
}−1

w�
i Yt and

assume (1) N∗ → ∞ as N → ∞; (2) N∗−1 ∑
i Zi →p σ2

ρ.

We then have
√
N∗(ρ̂mle − ρ) →d N(0, σ−2

ρ ) as N∗ → ∞.

The proof of Theorem 3 is given in Appendix A.4. As-
sumption (1) in Theorem 3 guarantees that the effective
sample size N∗ diverges to infinity as the network size N
diverges. Assumption (2) in Theorem 3 is a law of large
number type assumption imposed on Zi, which assumes cer-
tain type of uniformity among the network nodes. Although
MLE has higher estimation efficiency compared to ME, it is
hard to obtain an analytical form of ρ̂mle. As an alternative,
the ME ρ̂me is proposed with analytical form as

(11) ρ̂me =

(
N∑
i=1

T∑
t=1

w�
i Yt−1

)−1 N∑
i=1

T∑
t=1

Yit.

To derive the theoretical results of ρ̂me, we first write

W t = (w
(t)
ij ), where w

(t)
ij is the (i, j)th element of W t.

For convenience, we further define ν = (ν1, · · · , νN )� =∑T
t=1 E(Yt) =

∑T
t=1 ρ

tW t
Y0, where νi is the expected

number of responses for node i during 1 ≤ t ≤ T . Let
ν̃ = (ν̃1, · · · , ν̃N )� ∈ R

N , where ν̃i = I(νi > 0) indicates
whether node i has a positive probability to response dur-
ing the whole time period T . The asymptotic property of
ρ̂me is then given by Theorem 4 as follows.

Theorem 4. Assume (1) N∗ → ∞ as N → ∞;

(2) (N∗)−1
∑N

i=1

∑T
t=1

{
pit(1 − pit)

}
→p σ2

1; (3)

(N∗)−2
∑T

t=1

∑
j∈J (

∑
i w

(t)
ij )2 → 0, where J = {j : ν̃j = 1},

as N∗ → ∞. Then we have
√
N∗(ρ̂me − ρ) →d N(0, σ2

1) as
N∗ → ∞.

The proof of Theorem 4 is given in Appendix A.5. We il-
lustrate the conditions respectively as follows. The first con-
dition guarantees that the effective sample size N∗ should
diverge to infinity as the network size N diverges. The sec-
ond condition is a law of large number type condition, which
restricts the heterogeneity levels of the nodes. For the last

condition, note that w
(t)
ij �= 0 implies that the ith node could

be connected with the jth node within t steps. Therefore,
it imposes a sparsity condition for the network structure. It
is remarkable that ρ̂me is an

√
N∗-consistent estimator. In

practice, the network is extremely sparse thus this condition
will be easily satisfied.

4. NUMERICAL STUDIES

4.1 Simulation models

To demonstrate the finite sample performance of the pro-
posed methodology, we present three examples in this sub-
section. The main difference is the generating mechanism
of the adjacency matrix A. We first generate Yi0 indepen-
dently according to Bernoulli distribution with p = 0.3 for
1 ≤ i ≤ N . Then, Yts (t = 1, · · · , T ) are randomly gener-
ated according to model (1). Lastly, for each example, we
set the network diffusion effect ρ ∈ {0.1, 0.3, 0.5}.

Example 1 (Dyad Independence Model). We follow
Holland and Leinhardt (1981) to define a dyad as Dij =
(aij , aji) (1 ≤ i < j ≤ N), which is assumed to be indepen-
dent with each other. To ensure the network sparsity, we
set the probability of symmetric dyad (i.e., Dij = (1, 1))
as P (Dij = (1, 1)) = 20N−1. Next, we set P (Dij =
(1, 0)) = P (Dij = (1, 0)) = 0.5N−0.8. This implies the ex-
pected nodal in-degree and out-degree is O(N0.2), which
diverges to infinity at a slow rate. Lastly, we have P (Dij =
(0, 0)) = 1− 20N−1 −N−0.8, which implies null dyads (i.e.,
Dij = (0, 0)) are the most frequently observed in real social
networks.

Example 2 (Stochastic Block Model). Next, we con-
sider the stochastic block model (Wang and Wong, 1987;
Nowicki and Snijders, 2001), which is of particular interest
for community detection (Zhao et al., 2012). Specifically, we
follow Nowicki and Snijders (2001), and randomly generate
a block label (k = 1, · · · ,K) for each node with equal prob-
ability. The number of blocks is set to be K = N/100. Next,
we set P (aij = 1) = 0.3N−0.3 if i and j belong to the same
block and P (aij = 1) = 0.3N−1 otherwise. Consequently,
nodes have higher probability to connect if they belong the
same block.

Example 3 (Power-Law Distribution Model). According to
Clauset, Shalizi and Newman (2009), the nodal in-degrees
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Table 1. Simulation Results with 1000 Replications for dyad independence network. The Root Mean Square Error (×10−2),
Coverage Probability (%), CPU time (in second), and the Network Density (%) are reported

ρ Sample Size MLE ME

N N∗ RMSE CP(%) CPU RMSE CP(%) CPU ND(%)

0.1 500 183.5 2.27 92.9 0.2 2.27 92.8 0.1 4.69
1000 331.9 1.71 94.6 0.7 1.71 94.5 0.2 2.40
2000 688.9 1.18 93.7 3.0 1.18 93.6 1.0 1.23
10000 3300.0 0.53 94.8 70.0 0.53 94.8 23.4 0.26

0.3 500 218.8 3.57 94.3 0.2 3.57 94.4 0.1 4.69
1000 395.3 2.62 95.2 0.8 2.63 95.0 0.2 2.40
2000 887.7 1.73 95.5 3.4 1.73 95.5 1.0 1.23
10000 4299.6 0.82 94.8 72.1 0.82 94.5 23.2 0.26

0.5 500 270.9 4.28 93.6 0.2 4.29 93.7 0.1 4.69
1000 562.8 2.86 95.2 0.8 2.88 94.9 0.2 2.40
2000 1140.7 2.01 95.5 3.5 2.01 95.6 1.0 1.23
10000 5534.1 0.93 94.7 74.4 0.93 94.8 23.0 0.26

approximately follow a power-law distribution. This re-
flects the fact that in real social networks the major-
ity of nodes have few followers but a small amount have
a huge number of followers. To mimic this phenomenon,
we simulate A as follows. First, generate nodal in-degree
(di =

∑
j aji) from the discrete power-law distribution, i.e,

P (di = k) = ck−α, where α is set to be 2.5 according
to Clauset, Shalizi and Newman (2009). Lastly, for the ith
node, we randomly select di nodes to be its followers.

4.2 Performance measurements and
simulation results

Different network sizes are considered for each simulation
example as N = 500, 1000, 2000, 10000. To obtain a reliable
result, the experiment is replicated for R = 1000 times. In
order to verify the conditions in Theorem 3 and Theorem 4,
we have conducted some works on the three simulations and
the verification results are shown in Appendix A.6 For each
example, the average effective sample size (i.e., N∗) is re-
ported. Let ρ̂(r) be the estimator in the rth replication. In
order to obtain ρ̂mle, Newton-Raphson method is adopted
to maximize �(ρ). The following measurements are consid-
ered to evaluate the finite sample performance. First, the
root mean square error (RMSE) is calculated by RMSE =

{R−1
∑R

r=1(ρ̂
(r) − ρ)2}1/2 to gauge the estimation accu-

racy. Next, a 95% confidence interval is constructed for ρ
as CI(r) = (ρ(r)−z0.975N

∗−1/2σ̂(r), ρ(r)+z0.975N
∗−1/2σ̂(r)),

where zα is the αth upper quantile of the standard normal
distribution and σ̂2(r) is the estimated asymptotic variance
in the rth replication. The corresponding asymptotic vari-
ances of MLE and ME are given by conclusion of Theorem 3
and Theorem 4 respectively. Then, we compute the coverage
probability as CP = R−1

∑R
r=1 I(ρ̂

(r) ∈ CI(r)), where I(·) is
the indicator function. In addition, the average computing
time (CPU) measured in second and network density (ND,

defined as
∑N

i,j=1 aij/(N
2 −N)) are reported.

The simulation results are summarized in Table 1 to Ta-
ble 3. The patterns are quite similar across different net-
works structures, which indicate a robust performance of
the proposed methods. Take the dyad independence net-
work (i.e., Table 1) for example. It can be seen the RMSE
is decreased for both MLE and ME as the effective sample
size N∗ increases, which corroborates the consistency results
in Theorem 3 and Theorem 4. Particularly, although MLE
is slightly more efficient than ME, one could see that the
difference is sufficiently small (i.e., the RMSEs of MLE and
ME are almost equivalent across all settings). This implies
that the ME is almost as optimal as MLE. With regards
to the computational time, ME is found to be faster, where
the CPU time for ME is only one third of MLE. Lastly, one
could see the CPs of both estimators are stable around 95%.
This is consistent with the theoretical results in Theorem 3
and Theorem 4.

4.3 Short term and long term analysis

In this section, we conduct the short term and long
term analysis in the simulation study. For a reliable eval-
uation, we repeat the procedure for R = 1000 times. In
the rth round, given each type of network structure, we

generate the responses Y
(r)
it by the model (1). Next, we

could calculate IDS(r)(t) by IDS(r)(t) =
∑

i Yit, the one

step ahead prediction E∗{IDS(r)(t)} by (3), and two steps
ahead prediction by (7) respectively. Then we could obtain

IDS(t) = R−1
∑

r IDS(r)(t) and its average short term pre-

diction as R−1
∑

r EIDS(r)(t). To evaluate the prediction
accuracy, we calculate the mean square error (MSE) of one
step and two steps prediction. The results are shown in Fig-
ure 1, where the one step prediction has lower MSE than
two step prediction. This corroborates with the theoretical
analysis the short term analysis.

Next, we conduct a long term analysis by a simulation
study. In this study, we generate the adjacency matrix A
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Table 2. Simulation Results with 1000 Replications for stochastic block network. The Root Mean Square Error (×10−2),
Coverage Probability (%), CPU time (in second), and the Network Density (%) are reported

ρ Sample Size MLE ME

N N∗ RMSE CP(%) CPU RMSE CP(%) CPU ND(%)

0.1 500 158.7 2.44 91.1 0.2 2.44 91.1 0.1 0.98
1000 350.3 1.61 94.0 0.7 1.61 93.9 0.3 0.38
2000 687.4 1.15 94.8 3.0 1.15 94.6 0.9 0.16
10000 3399.7 0.50 95.6 72.0 0.50 95.4 23.3 0.02

0.3 500 185.6 3.85 94.3 0.2 3.87 94.4 0.1 1.05
1000 415.1 2.59 94.2 0.8 2.60 94.5 0.3 0.42
2000 837.8 1.65 95.5 3.3 1.66 95.5 0.9 0.18
10000 4081.6 0.77 95.6 81.7 0.77 95.6 23.4 0.03

0.5 500 287.3 3.65 95.1 0.2 3.67 95.6 0.1 0.98
1000 609.1 2.63 94.5 0.8 2.66 94.0 0.2 0.46
2000 1073.3 1.88 95.4 3.4 1.91 95.5 0.9 0.18
10000 5532.8 0.76 96.1 85.4 0.78 95.4 24.2 0.02

Table 3. Simulation Results with 1000 Replications for power-law distribution network. The Root Mean Square Error
(×10−2), Coverage Probability (%), CPU time (in second), and the Network Density (%) are reported

ρ Sample Size MLE ME

N N∗ RMSE CP(%) CPU RMSE CP(%) CPU ND(%)

0.1 500 180.4 2.35 93.8 0.2 2.35 93.9 0.0 0.49
1000 480.1 1.35 95.0 0.8 1.35 95.1 0.2 0.26
2000 617.2 1.21 93.4 3.1 1.21 93.3 0.9 0.12
10000 3169.3 0.53 94.9 71.6 0.53 94.8 23.5 0.02

0.3 500 182.8 3.67 94.6 0.2 3.69 94.4 0.1 0.50
1000 449.0 2.27 94.6 0.8 2.30 94.5 0.2 0.23
2000 939.6 1.57 95.0 3.4 1.58 94.8 0.9 0.12
10000 4710.3 0.72 95.0 79.9 0.72 95.2 23.4 0.02

0.5 500 217.8 4.18 93.4 0.2 4.26 93.6 0.0 0.46
1000 623.2 2.31 94.7 0.9 2.38 95.4 0.2 0.23
2000 1510.0 1.49 95.3 3.4 1.51 95.5 0.9 0.12
10000 5846.2 0.79 94.5 81.2 0.81 94.1 23.4 0.02

Figure 1. The MSE of one step and two step predictions for three network models, i.e., Dyad Independence Model, Stochastic
Block Model, and Power-law Distribution Model.
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by a symmetric stochastic block model. Then we verify the
upper bound of the ε-convergence time given by Theorem 2.
Set ε = 10−i, i = 1, 2, . . . , 100, we calculate t(ε) and its up-
per bound in (9) for R = 100 repeated experiments. Then
we report corresponding average values respectively in Fig-
ure 2. As shown by the Figure 2, the upper bound given by
Theorem 2 is pretty tight for t(ε).

4.4 Diffusion of earthquake news on Sina
Weibo

In this section, we apply the newly proposed network
diffusion model (1) to a Sina Weibo dataset. Specifically,
N = 9,830 users are collected from Sina Weibo’s open API
(open.weibo.com), and Sina Weibo is the largest Twitter
type social network platform in China. Particularly, their
corresponding Weibo posts are recorded for one week after
the 7 magnitude of earthquake in Ya’an (a city in Sichuan

Figure 2. t(ε) and its upper bound for Symmetric Stochastic
Block Model.

province of China) on April 20th, 2013. At first, 100 users
are randomly selected from overall users and their followees
are added into the poll subsequently. After repeating track-
ing followees of newly added users four times, users who did
not publish message containing Ya’an during certain time
period are excluded. Finally, 9830 users are randomly se-
lected to keep a reasonable size of the sample. A diffusion
process among the network users is triggered immediately
after an official account announced the earthquake news. In
this section, we aim to estimate the network diffusion ef-
fect among users with regards to the diffusion of earthquake
news.

First, the adjacency matrix A is defined to be the
following-followee relationship between users. The adjacency
matrix A is asymmetric in this context since Sina Weibo
does not restrict the users to mutually follow each other,
i.e., it is allowed aij �= aji. The resulting network density is
0.146%, which indicates a sufficiently sparse network. The
histograms of nodal in-degrees and out-degrees are visual-
ized in Figure 3, where the distribution of in-degrees are
more skewed than out-degrees. The response variable Yit

is defined to be whether the ith user has re-tweeted the
earthquake news on the tth day. For instance, user i could
re-tweet news about the earthquake on the first and second
day, but retweeted nothing on the third day. In this case,
Yi1 = Yi2 = 1, while Yi3 = 0. To conduct a preliminary data
clean procedure, it should be noted that the whole network
structure is not available, therefore one might repost the
weibo from some node outside our scope. To alleviate this
problem, we add a “virtual” node to represent the outside
nodes beyond the dataset, which is followed by all the nodes
but has no followees. We then let the responses of this vir-
tual node to be 1 over all 1 ≤ t ≤ T . In this way, each node
in our collected dataset can be equipped with a positive
probability to repost news from the outside network.

Figure 3. The left panel: histogram of nodal in-degree for N = 9831 nodes. The highly right skewed shape can be detected;
The right panel: histogram of nodal out-degree for N = 9831 nodes. Right skewed phenomenon can also be detected.
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Figure 4. Number of earthquake related Weibo posts for 7
days after the occurrence of the earthquake. A sharply

decreasing pattern can be captured.

To visualize the overall diffusion pattern, the total num-
ber of earthquake related Weibo posts are summarized in
each day (i.e.,

∑
i Yit) in Figure 4. A sharply decreasing

trend can be captured for the diffusion process at aggre-
gate level. We then conduct estimation on the proposed
network diffusion model. The estimated network diffusion
effects (i.e., ρ) of MLE and ME are 0.093 and 0.096 respec-
tively, which are almost identical to each other. Moreover,
the effective sample size is estimated to be 4824.5, and both
estimates are statistically significant under the 5% signifi-
cance level.

5. CONCLUDING REMARKS

In this article, we study the diffusion process in large scale
social networks. Particularly, a network diffusion model is
proposed and investigated in both individual and aggregate
level. Both the short term and the long term analysis of
the network diffusion size are discussed. To estimate the pa-
rameter of the network diffusion effect, two estimators (i.e.,
MLE and ME) are proposed. In addition, their asymptotic
properties are theoretically investigated and verified through
extensive numerical studies. It is found the ME enjoys the
same convergence rate as the MLE, and can be as almost
optimal as MLE by the simulation results.

To conclude this work, we have the following discussions
for potential future research topics. First, it is noteworthy
that the network diffusion model (1) is in a linear form of
the previous responses. However, in practice, various non-
linear modeling frameworks can be taken into consideration.
Then, the analysis of the diffusion size and the parameter
estimation method should be re-examined under the new
framework. Next, although only the response information
(i.e., Yit) is involved in the network diffusion model, other
exogenous variables (e.g., node specific covariates) can be

employed to improve the model accuracy. Third, it can be
restricted to assume the network diffusion parameter ρ to
be the same for all the nodes in the network. As an alterna-
tive, it is more flexible to allow the parameter ρ to vary with
different nodes, i.e., ρi (1 ≤ i ≤ N), which could better cap-
ture the nodal heterogeneity across the network. In addition,
we cannot numerically guarantee that the estimated ρ̂mle is
within (0, 1), especially when the true value of ρ is close to
1 (e.g., ρ = 0.99) and the sample size is not large. In such
a case, one may use a thresholding technique to modify the
estimator as ρ̃mle = min{ρ̂mle, τ}, where τ could be set as
τ = 0.99. However, it might be problematic and we take this
case as a future research study topic. Lastly, even though
the structure of a network will not change significantly in
a short time, it would be more precise and interesting to
include this change by introducing At into the model.

APPENDIX A

A.1 Proof of (8)

The two steps ahead conditional variance can be calcu-
lated as follows:

(12)

var∗
{
IDS(t+ 2)

}
= var(1�

Yt+2|Ft)

=E
{
var(1�

Yt+2|Ft+1)|Ft}

+ var
{
E(1�

Yt+2|Ft+1)|Ft}

=E
{ N∑

i=1

ρw�
i Yt+1(1− ρw�

i Yt+1)|Ft}

+ var(1�ρWYt+1|Ft)

=E
{ N∑

i=1

ρw�
i Yt+1|Ft}

− E
{ N∑

i=1

ρ2w�
i Yt+1w

�
i Yt+1)|Ft}

+ ρ21�W�var(Yt+1|Ft)

=E∗
{
IDS(t+ 2)

}
−

N∑
i=1

(p
(2)
it )2

+ ρ2
N∑
i=1

∑
1≤j �=k≤N

wjiwkipi(t+1)(1− pi(t+1)).

This completes the proof.

A.2 Proof of Theorem 1

By the assumption of irreducibility and aperiodicity, it
could be concluded that there exists a stationary distribu-
tion π for the Markov chain by Levin and Peres (2017). As
a result, we have W t → 1π� as t → ∞. Accordingly, it
could be verified that EIDS(t) = ρt1�1π�

Y0 = ρtNπ�
Y0.

Then, we obtain that (1) EIDS(t) → 0 if 0 ≤ ρ < 1; (2)
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EIDS(t) = 1�W t
Y0 → Nπ�

Y0 as t → ∞. This completes
the proof.

A.3 Proof of Theorem 2

Recall that the ε-convergence time is t(ε) = min{t :
d(t) ≤ ε}. In this part, we intend to derive an upper
bound for t(ε). To this end, we first verify that there ex-
ists a stationary distribution π = (π1, · · · , πi)

� ∈ R
N for

the Markov chain with transition probability matrix W .
As a result, W t → 1π�. Second, we find an upper bound
d∗(t) for d(t) that d(t) ≤ d∗(t). Then the upper bound for
t(ε) could be constructed by deriving the upper bound for
t∗(ε) = sup{t : d∗(t) ≤ ε}. Since t(ε) < t∗(ε), the upper
bound for t(ε) could be obtained.

First, to verify the stationary distribution of the
Markov chain (with transition probability matrix W ) ex-
ists, it suffices to show the Markov chain is reversible by
Levin and Peres (2017) under the irreducibility assumption

in Theorem 2. By setting πi = ni/(
∑N

i=1 ni), we have

πiwij = πjwji = aij/(
∑N

i=1 ni) for any i, j ∈ {1, · · · , N}. As
a result, the Markov chain is reversible (Meyn and Tweedie,
2012). Further more, it could be verified π = (π1, · · · , πi)

�

is the stationary distribution vector.

Second, we construct an upper bound d∗(t) for d(t).

To do this, we first write W t = (w
(t)
ij ) ∈ R

N×N .
Since we have 0 ≤ Y0i ≤ 1, it can be obtained that

d(t) ≤ ρt1�Δ
(t)
W 1 = ρt

∑
i,j δ

(t)
ij , where Δ

(t)
W = (δ

(t)
ij ) ∈

R
N×N with δ

(t)
ij = |w(t)

ij − πj |. Furthermore, due to

that
∑

1≤i,j≤N δ
(t)
ij ≤ N maxi{

∑N
j=1 δ

(t)
ij }, we have d(t) ≤

d∗(t) = ρtN maxi{
∑N

j=1 δ
(t)
ij }. It could be easily verified that

d∗(t) ≤ ε is equal to d̃(t) = maxi{
∑N

j=1 δ
(t)
ij } ≤ ρ−tN−1ε.

As a result, we have t∗(ε) = sup{t : d∗(t) ≤ ε} = sup{t :
d̃(t) ≤ ρ−tN−1ε}. Subsequently, by Levin and Peres (2017)
(Proposition 4.2 and Theorem 12.3), we have

t∗(ε0) ≤ log
( 2

ε0γmin

) 1

1− λ∗ ,

where ε0 = ρ−t∗(ε)N−1ε. It then could be easily calculated
that

t∗(ε0) ≤
1

1− λ∗ − log ρ
log

2N

εγmin
.

Further note that t(ε) ≤ t∗(ε), then (9) can be obtained.
This completes the proof.

A.4 Proof of Theorem 3

Lemma 1. Assume the conditions in Theorem 3. Then we
have N∗−1 ∑T

t=1

∑N
i=1 ρ

−2(1 − pit)
−2I(w�

i Yt−1 > 0)(Yit −
pit)

2 →p σ2
ρ.

Proof. By the condition (2) in Theorem 3, we

have N∗−1 ∑N
i=1 Zi = N∗−1 ∑T

t=1

∑N
i=1 ρ

−2{1 −

pit}−2I(w�
i Yt−1 > 0)pit(1 − pit) → σ2

ρ. Then it suf-
fices to show

(13) N∗−1
N∑
i=1

T∑
t=1

Δit = op(1),

where Δit = ρ−2(1 − pit)
−2I(w�

i Yt−1 > 0){(Yit − pit)
2 −

pit(1 − pit)}. It could be easily verified that E(Δit) =
E[ρ−2(1− pit)

−2E{(Yit − pit)
2 − pit(1− pit)|Yt−1}] = 0 due

to that E
{
(Yit − pit)

2 − pit(1− pit)|Yt−1

}
= 0.

Next, we are going to show that
N∗−2var(

∑N
i=1

∑T
t=1 Δi) → 0 as N∗ → ∞. For any t1 > t2

or i1 �= i2, it could be verified that cov(Δi1t1 ,Δi2t2) =
E(Δi1t1Δi2t2) = E{E(Δi1t1 |Δi2t2)Δi2t2} = 0. Then

we have var(
∑N

i=1

∑T
t=1 Δi) =

∑N
i=1

∑T
t=1 var(Δit).

By noting that var(Δit) = var{E(Δit|Yt−1)} +
E{var(Δit|Yt−1)} = E{var(Δit|Yt−1)} due to that
E(Δit|Yt−1) = 0. Furthermore, it could be derived
that var(Δit|Yt−1) ≤ p−4

it (1 − pit)
−4E(Yit − pit|Yt−1)

4 =

ρ−4(1−ρ)−4
{
(1−pit)

4pit+p4it(1−pit)
}
≤ 2ρ−4(1−ρ)−4pit.

As a result, we have
∑N

i=1

∑T
t=1 var(Δit) ≤ 2ρ−4(1 −

ρ)−4
∑N

i=1

∑T
t=1 E(pit) = CN∗, where C = 2ρ−3(1 − ρ)−4

is a constant. Consequently, we have N∗−2 ∑N
i=1

∑T
t=1

var(Δit) ≤ CN∗−1 → 0. Therefore, (13) could be
obtained.

Proof of Theorem 3. The asymptotic properties can be es-
tablished in 2 steps. in the 1st step, we are going to show
that ρ̂mle is a

√
N∗-consistent local maximizer. In the 2nd

step, we prove the asymptotic normality of the MLE esti-
mator.

Step 1. Let an = N∗−1/2. We follow Fan and Li (2001) to
show that, for any ε > 0, there exists a constant C > 0 such
that

(14) P
{

sup
|u|=1

�(ρ+ anuC) < �(ρ)
}
≥ 1− ε.

This implies that with probability at least 1− ε, there exists
a local optimizer ρ̂ in the ball {ρ + anuC : |u| ≤ 1}. As
a result, we have |ρ̂ − ρ| = Op(an). To this end, we apply
Taylor’s expansion and obtain

sup
|u|=1

{
�(ρ+ anuC)− �(ρ)

}
= sup

|u|=1

{
Can�̇(ρ)u− 2−1C2a2nu

2�̈(ρ) + op(1)
}

(15) ≥ C|an�̇(ρ)| − 2−1C2{−a2n�̈(ρ)}+ op(1)

which is a quadratic function in C asymptotically. Next,
note that �̇(ρ) =

∑N
i=1

∑T
t=1
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I(w�
i Yt−1 > 0)ρ−1(1− pit)

−1(Yit − pit). Then we have

E{an�̇(ρ)} = an

N∑
i=1

T∑
t=1

E
{
I(w�

i Yt−1 > 0)ρ−1(16)

(1− pit)
−1E(Yit − pit|Yt−1)

}
= 0.

By the result of Lemma 1, it could be shown that an�̇(ρ)
is Op(1). Similarly, by Lemma 1 we have a2n�̈(ρ) =

−a2n
∑N

i=1

∑T
t=1 ρ

−2(1− pit)
−2I(w�

i Yt−1 > 0)(Yit − pit)
2 =

σ−2
ρ {1 + op(1)}. This implies that the coefficient for the

quadratic term in (15) is a positive constant asymptotically.
As a result, the quadratic term should dominate the linear
term as long as C is sufficiently large (Fan and Li, 2001).
This proves the result of (14).

Step 2. By the first step, we know that ρ̂mle is
√
N∗-

consistent. This enables us to obtain the following asymp-
totic approximation

√
N∗(ρ̂mle − ρ) =

{
N∗−1/2�̇(ρ)

}{
1 + op(1)

}
{
N∗−1�̈(ρ)

} .(17)

By Lemma 1, we know that −N∗−1�̈(ρ) → σ2
ρ. We next

show that

(18) N∗−1/2�̇(ρ) →d N(0, σ2
ρ).

Let ξit = N∗−1/2I(w�
i Yt−1 > 0)ρ−1(1 − pit)

−1(Yit − pit).

Then we have N∗−1/2�̇(ρ) =
∑N

i=1

∑T
t=1 ξit. Define the se-

quence {Y ∗
j : Y ∗

i+(t−1)N = Yit, 1 ≤ j ≤ NT} and {ξ∗j :

ξ∗i+(t−1)N = ξit, 1 ≤ j ≤ NT}. In addition, let F∗
j be a set

generated by {Y ∗
k , 1 ≤ k ≤ j}. Then it could be easily veri-

fied that E(ξ∗j |F∗
j−1) = 0. Therefore, {ξ∗j ,F∗

j , 1 ≤ j ≤ NT}
is a martingale difference array (MDA). We then employ
the central limit theorem for MDA (Hall and Heyde, 2014,
Corollary 3.1) to prove (18).

To this end, it could be first easily verified E(ξ2it) ≤
4(N∗)−1ρ−2(1−ρ)−2 < ∞ due to that (1−pit)

−1 ≤ (1−ρ)−1

and |I(w�
i Yt−1 > 0)(Yit − ρw�

i Yt−1)| ≤ 2. Second, it could
be calculated that

NT∑
j=1

E
{
(ξ∗j )

2|F∗
j−1

}

=

N∑
i=1

T∑
t=1

E
{
(ξi+(t−1)N )2|F∗

i+(t−1)N−1

}
=(N∗)−1

N∑
i=1

T∑
t=1

ρ−1(1− pit)
−1w�

i Yt−1 →p σ2
ρ

according to condition (2) in Theorem 3. Third, for any

ε > 0, as N∗ → ∞

NT∑
j=1

E
{
ξ∗j

2I(|ξ∗j | > ε)|F∗
j−1

}
≤ ε−2

∑
j

E
{
ξ∗j

4|F∗
j−1

}

=ε−2N∗−2ρ−4(1− ρ)−4
N∑
i=1

T∑
t=1

E
{
(Yit − pit)

4|Yt−1

}
=2ε−2N∗−2ρ−4(1− ρ)−4

N∑
i=1

T∑
t=1

pit

=2ε−2ρ−3(1− ρ)−4N∗−1 →p 0

due to that 0 ≤ {p3it+(1− pit)
3} ≤ 2 as N∗ → ∞. Thus, by

the central limit theorem for MDA (Hall and Heyde, 2014,
Corollary 3.1), (18) holds. This completes the proof.

A.5 Proof of Theorem 4

By (11), ρ̂me can be written as ρ̂me = ρ +

S−1
1 S2, where S1 = N∗−1 ∑N

i=1

∑T
t=1 w

�
i Yt−1 and S2 =

N∗−1 ∑N
i=1

∑T
t=1(Yit − pit). As a result, the conclusion of

Theorem 3 holds if

S1 →p 1,(19)
√
N∗S2 →d N(0, σ2

1),(20)

as N∗ → ∞. Subsequently, we prove (19) and (20) in Step
1 and Step 2 respectively.

Step 1. Proof of (19). In this step, it suffices to show that
E(Si)/N

∗ → 1, and var(S1)/N
∗2 → 0. We first rewrite S1 as

S1 = N∗−1 ∑N
i=1

∑T
t=1 w

�
i Yt−1 =

∑T
t=1 1

�WYt−1. Then it

could be calculated that E(S1) =
∑T

t=1 ρ
t−11�W t

Y0 = N∗.
As a result, we have E(Si)/N

∗ = 1. Second, to prove
var(S1)/N

∗2 → 0, it suffices to show var(1�WYt)/N
∗2 → 0

for t = 1, · · · , T − 1 by Cauchy inequality. First note
that var(1�WYt) = 1�W cov(Yt)W

�1. Next, for matri-

ces M1 = (m
(1)
ij ) ∈ R

k1×k2 and M2 = (m
(2)
ij ) ∈ R

k1×k2 ,

define M1 � M2 as m
(1)
ij ≤ m

(2)
ij for 1 ≤ i ≤ k1 and

1 ≤ j ≤ k2. Then it can be verified that cov(Yt) =

cov
{
E(Yt|Yt−1)

}
+ E

{
cov(Yt|Yt−1)

}
=ρ2W cov(Yt−1)W

�

+ E
[
diag{ρWYt−1 ◦ (1− ρWYt−1)

}]
�ρ2W cov(Yt−1)W

� + diag
{
E(ρWYt−1)

}
=ρ2W cov(Yt−1)W

� + ρt diag(W t
Y0),

(21)

where ◦ is the Hadamard product and the inequal-
ity is due to that W is elementwisely non-negative.
Apply (21) iteratively then it could be obtained that
cov(Yt) � ρt diag(W t

Y0)+ρt+1W diag(W t−1
Y0)W

�+· · ·+
ρ2t−1W t−1 diag(WY0)(W

�)t−1. Recall ν =
∑T

t=1 ρ
tW t

Y0
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Figure 5. N∗ versus N in three models. The left panel for Dyad Independence Model. The middle panel for Stochastic Block
Model. The right panel for Power-Law Model.

and ν̃ = (I(νi > 0)). Then we have W t
Y0 � ν̃.

By condition (3) in Theorem 3, it could be de-

rived that (N∗)−21�W k diag(W t−k
Y0)(W

�)k1 ≤
(N∗)−21�W k diag(ν̃)(W�)k1 → 0 as N∗ → ∞.

Step 2. Proof of (20). Define ζit = (N∗)−1/2
(Yit −

ρw�
i Yt−1) and {ζ∗j : ζ∗i+(t−1)N = ζit, 1 ≤ j ≤ NT}. Then

we have S2 =
∑N

i=1

∑T
t=1 ζit =

∑
j ζ

∗
j . Recall the se-

quence {Y ∗
j : Y ∗

i+(t−1)N = Yit, 1 ≤ j ≤ NT} and its

corresponding set defined in Appendix A.3. Similar to

the proof of Step 2 in Appendix A.3, it could be verified

E(ζ∗j |F∗
j−1) = 0. As a result, {ζ∗j ,F∗

j , 1 ≤ j ≤ NT} is a

martingale difference array (MDA) and the central limit

theorem for MDA could be applied. To this end, first,

it could be verified E(ζ2it) ≤ 4(N∗)−1 < ∞ due to that

|Yit − ρw�
i Yt−1| ≤ 2. Thus, E(ζ∗j )

2 ≤ 4(N∗)−1 < ∞. Sec-

ond, it could be calculated that
∑

j E
{
ζ∗j

2|F∗
j−1

}
=∑N

i=1

∑T
t=1 E

{
ζ∗i+(t−1)N

2|F∗
i+(t−1)N−1

}
=

N∗−1 ∑N
i=1

∑T
t=1 pit(1 − pit) →p σ2

1 according to con-

dition (2) in Theorem 3. Third, as N∗ → ∞, it holds that

0 ≤ {p3it + (1− pit)
3} ≤ 2 as N∗ → ∞. Then, for any ε > 0,

we have that
∑NT

j=1 E{ζ∗j 2I(|ζ∗j | > ε)|F∗
j−1} ≤

ε−2
∑
j

E
{
ζ∗j

4|F∗
j−1

}

=ε−2(N∗)−2
N∑
i=1

T∑
t=1

E
{
I(w�

i Yt−1 > 0)(Yit − pit)
4|Yt−1

}

=ε−2(N∗)−2
N∑
i=1

T∑
t=1

pit(1− pit)
{
p3it + (1− pit)

3
}

≤2ε−2(N∗)−2
N∑
i=1

T∑
t=1

pit(1− pit),

which converges to 0 in probability as N∗ → ∞. Thus, by
the central limit theorem for MDA (Hall and Heyde, 2014,
Corollary 3.1), (20) holds. This completes the proof.

A.6 Verifications of the conditions in
Theorem 3 and Theorem 4

We devote this section to verify the assumptions in The-
orem 3 and Theorem 4 for three simulation studies. We set
different sample size N = 500, 1000, 1500, 2000, 2500 and
generate Yi0 independently according to Bernoulli distribu-
tion with p = 0.3 for 1 ≤ i ≤ N . Then, Yts (t = 1, · · · , T )
are randomly generated according to model (1). Lastly, for
each example, we set the network diffusion effect ρ = 0.5.
The experiment is randomly replicated for 200 times to ob-
tain a reliable result.

A.6.1 Verification of conditions in Theorem 3

In Theorem 3, we assume that N∗ → ∞ as N → ∞ and
N∗−1 ∑

i Zi →p σ2
ρ. To verify the condition, we calculate

the corresponding N∗ and N∗−1 ∑
i Zi. The detailed infor-

mation is given in Figure 5 and Figure 6. A clear pattern
for N∗ → ∞ as N → ∞ and a convergence pattern for
N∗−1 ∑

i Zi →p σ2
ρ could be observed.
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Figure 6. N∗−1 ∑
i Zi versus N in three models. The left panel for Dyad Independence Model. The middle panel for

Stochastic Block Model. The right panel for Power-Law Model.

Figure 7. (N∗)−1
∑N

i=1

∑T
t=1

{
pit(1− pit)

}
versus N in three models. The left panel for Dyad Independence Model. The

middle panel for Stochastic Block Model. The right panel for Power-Law Model.

A.6.2 Verification of conditions in Theorem 4

In Theorem 4, the verification of Assumption (1) is
the same as the Assumption (1) in Theorem 3. Then,
we verify the Assumption (2) and (3) in Theorem 4 re-
spectively. For Assumption (2), the convergence pattern

of (N∗)−1
∑N

i=1

∑T
t=1

{
pit(1 − pit)

}
is shown in Figure 7.

Next, we verify the Assumption (3) and draw the re-

sult in Figure 8. As one could observe, the sequence

(N∗)−2
∑T

t=1

∑
j∈J (

∑
i w

(t)
ij )2 shows a clear convergence

pattern to zero.

Received 1 July 2019
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Figure 8. (N∗)−2
∑T

t=1

∑
j∈J (

∑
i w

(t)
ij )2 versus N in three models. The left panel for Dyad Independence Model. The middle

panel for Stochastic Block Model. The right panel for Power-Law Model.
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