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Abstract

Network autoregression model (NAM), as a powerful tool to study user so-
cial behaviors on large scale social networks, has drawn great attention in recent
years. In this paper, we are interested in identifying the influential users (i.e.,
portal nodes) in a social network under the framework of NAM. Especially, we
consider the autoregression model that allows to have a heterogenous and s-
parse network effect coefficients. Therefore, the portal nodes take influential
powers which are corresponding to the nonzero network effect coefficients. A
screening procedure is designed to screen out the portal nodes and the strong
screening consistency is established theoretically. A quasi maximum likelihood
method is applied to estimate the influential powers. The asymptotic normality
of the resulting estimator is established. Further selection procedure is given by
taking advantage of the local linear approximation algorithm. Extensive numer-
ical studies are conducted by using a Sina Weibo dataset for illustration purpose.
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1. INTRODUCTION

The online social media (e.g. Facebook, Twitter, Wechat) is becoming an increas-

ingly important resource for collecting large-scale social network data. By analyzing

the social network data, online social media companies can provide more convenient

and punctual services, such as accurately recommending friends or production (Tang

et al., 2013) and finding target communities (Girvan and Newman, 2002) for social me-

dia users, which improve the user stickiness and activities. Recently, detecting opinion

leaders or celebrities, as one of the significant applications of network data, has been

drawn great attention (Bodendorf and Kaiser, 2009). Because, the online celebrities

are influential users who can help online social media companies to spread news, re-

lease products, and launch promotion campaigns (Aral and Walker, 2011; Stephen and

Galak, 2012; Gong et al., 2016).

There is an emerging stream of literature using network data for statistical analysis

(Goldenberg et al., 2010; Kolaczyk, 2009). Particularly, to quantitatively model the

social influence effect, network autoregression models (NAMs) are intensively studied

by the researchers (Chen et al., 2013; Zhou et al., 2017; Zhu et al., 2017, 2018b;

Huang et al., 2017; Cohen-Cole et al., 2018). The models basically assume that the

behaviours of the network users are closely related to their connected friends. To

name a few, Chen et al. (2013) and Zhou et al. (2017) study a Twitter-type online

social network, where they discover a positive network effect among the user posting

behaviors. Zhu et al. (2017) propose a network vector autoregression model, which

focus on the dynamic social behaviours. Subsequently, Huang et al. (2017) consider

to apply the network autoregression model to networks with repeated measurements.

Cohen-Cole et al. (2018) find that there are non-trivial within- and cross-choice peer

effects for the students’ social activities. Other than the social behaviour study, the

network analysis framework is also widely applied to complex financial systems, see

Hautsch et al. (2014); Zou et al. (2017); Härdle et al. (2016); Zhu et al. (2018b) for
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further discussions.

Despite the great usefulness of network analysis, however, to our best knowledge,

most the aforementioned network autoregression models only allow for homogeneous

network effect. In practice, one could observe the phenomenon of great unbalance

in social influential powers. For example, there are typically only a small amount of

users, as celebrities or opinion leaders on Twitter, whose opinions can resonate with

their followers significantly. The influential users, which are referred to as portal nodes

in this article, are of critical importance for social network marketing (Hinz et al.,

2011; Iyengar et al., 2011; Katona et al., 2011; Aral and Walker, 2012). By locating

the portal nodes, the marketers can target the vast potential customers and launch a

successful marketing campaign. Hence, how to identify the portal nodes is a significant

and valuable problem.

To identify the portal nodes, the network topology information has been widely

used. As a straightforward implication, the influential power of nodes can be character-

ized by the nodal degrees (Carrington et al., 2005; Scott, 2012). As an alternative, the

centrality measurements are also widely accepted indexes to rank nodes’ importance,

which essentially requires a favorable connectivity with other nodes in the network

(Kolaczyk, 2009; Newman, 2010). However, it is not always true that the nodes with

large nodal degrees (or centralities) will have greater influential powers. As revealed

by the real data example in Section 4, some social network users might be identified

as portal nodes since they have a lot of followers (e.g., actor or actress), however, they

might not have great influence on the followers’ daily activities because they are not

closely related to the users’ backgrounds. As an alternative, a direct measure of nodal

influences on its followers’ behaviors should be considered.

Different from the above topology-based methods, we aim at a model-based ap-

proach under the framework of NAM, which allows us to quantify the nodal influential

powers. We propose a portal nodes identification procedure to identify the portal n-
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odes with greater influential powers. The model considers a sparse structure of the

network effects in NAM, which allows for the potential heterogeneity of network nodes.

Particularly, the portal nodes are specified to take nonzero network effects, while oth-

ers with zero network effects are information receivers from the portal nodes. For the

portal nodes identification, we take advantage of the variable screening and selection

techniques (Fan and Li, 2001; Fan and Lv, 2008; Fan et al., 2014). The theoretical

screening consistency is established and the selection procedure is designed by taking

advantage of the local linear approximation (LLA) algorithm. Lastly, the proposed

method is applied to an online social network dataset for illustration purpose.

The rest of the article is organized as follows. Section 2 introduces the model

setting and portal nodes screening procedure. Section 3 discusses the post screening

estimation and presents a portal nodes selection procedure. Numerical studies are

given in Section 4. The article is concluded with a brief discussion in Section 5. All

technical details are delegated to the Appendix in a separate supplementary material.

2. PORTAL NODES SCREENING

2.1. Model and Notations

Consider a large scale network with N nodes, which are indexed by i = 1, · · · , N .

To describe their following relationship, we employ an adjacency matrix A = (aij) ∈

RN×N , where aij = 1 if the node i follows the node j, otherwise aij = 0. Particularly,

we do not allow self-following relations, i.e., aii = 0. In addition, define W = (wij) ∈

RN×N to be the row-normalized adjacency matrix, where wij = n−1i aij and ni =
∑

j aij,

namely the out-degree of node i. Let Yt = (Y1t, · · · , YNt)> ∈ RN be the continuous

response (e.g., tweet length) collected at time point t for 1 ≤ t ≤ T . In addition,

assume for each node, a p-dimensional covariate is collected as Zit = (Zi1t, · · · , Zipt)> ∈
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Rp. We consider the following network autoregression model (NAM),

Yit =
N∑
j=1

djwijYjt + Z>it γ + εit, (2.1)

where γ = (γ1, · · · , γp)> ∈ Rp is the nodal coefficient, and εit is the noise term. Note

the parameter dj associated with node j reflects the social influence of node j on other

nodes. Therefore, we refer d = (d1, d2, · · · , dN)> as influential powers of nodes.

The model is motivated from the famous spatio-temporal model in literature (Yu

et al., 2008; Dou et al., 2016), where the applications are mostly in spatial data.

Recently, there are researches extending the spatial data analysis to the network data

context and establish the NAM models (Zhou et al., 2017; Liu et al., 2017; Huang et al.,

2017; Zhu et al., 2018b,a), where they assume the same network influence parameters

for all network nodes. However, in practice, one could observe the phenomenon that

there are typically a small amount of users, as opinion leaders on social networks, whose

opinions can resonate with their followers significantly. This observation motivates us

to assume a sparse structure of d.

By sparsity, we mean only a limited number of djs are nonzero, while for the rest

dj = 0. The nodes corresponding to the nonzero social influential powers are collected

as M = {j : dj 6= 0, 1 ≤ j ≤ N}, which are then referred to as portal nodes. By this

specification, we could conclude immediately from (2.1) that the portal nodes could

have influence on each other, while the other nodes could only be influenced by the

portal nodes. Namely, the word “portal” is used to illustrate the role of the influential

nodes as information portals. Consequently, the information is diffused to the whole

network mainly through the portal nodes.

Let D = diag(d1, · · · , dN) ∈ RN×N and Zt = (Z1t, · · · , ZNt)> ∈ RN×p. One could

rewrite the model (2.1) as

Yt = WDYt + Ztγ + Et, (2.2)
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where Et = (ε1t, · · · , εNt)> ∈ RN is the noise vector. The response Yt can be repre-

sented by Yt = (I−WD)−1(Ztγ+Et). We assume that (I−WD) could be inverted to

make the representation valid. Note that here we allow D to have heterogeneous diag-

onal elements, which is consequently more generalized than the autoregressive models

(Lee, 2004; Lee and Yu, 2009; Zhu et al., 2018b). In addition, instead of dealing with

the cross-sectional data, here we require that one should have replications of Yt along

the time for t = 1, · · · , T . As one could see in the theoretical development, the time

replications of Yt essentially facilitate the theoretical analysis and recovering of D.

Remark 1. The model (2.2) is flexible to extend to the case with dynamic dependence.

Specifically, the lag terms of Yt (i.e., Yt−k with k ≥ 1) can be added and included in Zt.

Consequently, the screening technique discussed in this article can also be employed.

For the sake of simplicity, we keep the parsimonious model form (2.2).

Remark 2. The model form (2.2) is similar to the spatio-temporal model discussed

by Dou et al. (2016). They consider the following type of modelling,

Yt = D1WYt +D2WYt−1 + Et, (2.3)

where Dk = diag(dk1, · · · , dkN) ∈ RN×N (k = 1, 2) are diagonal matrices. In their

setting, dki is interpreted as how much the node i is influenced by the other nodes.

Although they are capable of capturing the heterogeneous influences of the connected

friends on the focal node, the framework could not directly quantify the influential

powers of the nodes. Our model, on the other side, allows us to identify the portal

nodes and directly estimate out their influential powers. One should also note that by

rewriting (2.3) as Yt = WD1Yt + WD2Yt−1 + Et, the model could then be transferred

into our framework. The screening and model selection technique proposed in this

work could be readily applied.
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2.2. Portal Nodes Screening

LetW·i be the ith column ofW andXt = Wdiag(Yt) = (W·1Y1t,W·2Y2t, · · · ,W·NYNt)

∈ RN×N . Then the model (2.2) could be rewritten as Yt = Xtd + Ztγ + Et. In

addition, define X = (X>1 , · · · , X>T )> ∈ R(NT )×N , Y = (Y >1 , · · · , Y >T )> ∈ RNT ,

Z = (Z>1 , · · · , Z>T )> = (Z1, · · · ,Zp) ∈ R(NT )×p, and E = (E>1 , E>2 , · · · , E>T ) ∈ RNT .

The model (2.2) could spell as

Y = Xd+ Zγ + E . (2.4)

Consequently, each node in the network can be treated as a covariate and the NAM can

be transformed to a linear regression form. However, it should be noted that screening

on d might depend on the unknown parameter γ. To take this into consideration,

we project each column of X = (X1, · · · ,XN) on the column space of Ỹ = (Y,Z).

That leads to a linear regression with Xj being response and Ỹ being predictors.

Consequently, a regression R2 with respect to each Xj can be approximated as

R̂2
j =

X>j
{
Ỹ(Ỹ>Ỹ)−1Ỹ>

}
Xj

X>j Xj

. (2.5)

For a given proper thresholding value c, we could estimate the portal nodes set by

M̂ =
{

1 ≤ j ≤ N : R̂2
j > c

}
. (2.6)

Remark 3. To get more insights of the screening measure R̂2
j , we consider the special

case without exogenous variables Z. Therefore Ỹ = Y and we could rewrite R̂2
j as

R̂2
j =

(Y>Xj)
2

‖Y‖2‖Xj‖2
=

{
∑T

t=1(W
>
·j Yt)Yjt}2

(
∑T

t=1 Y
>
t Yt)(

∑T
t=1W

>
·jW·jY

2
jt)
,

which is exactly the square of sample correlation between (Yjt : 1 ≤ t ≤ T )> and
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(W>
·j Yt : 1 ≤ t ≤ T )>. In other words, it measures the dependency of the activeness for

the focal node j with respect to its followers’ activeness. Consequently, the correlation

based measure R̂2
j could filter out the nodes, who have weak correlation with their

followers.

Remark 4. Note that the proposed portal nodes screening measure (2.5) is in spirit

similar to the conditional sure independence screening (CSIS) method (Barut et al.,

2016). Namely, our approach is to project Xj on the column space of Ỹ = (Y,Z), while

Barut et al. (2016) utilizes the projection of Y on the column space of (Xj,Z). By

further assuming Xj is standardized, the two approaches could be unified by ranking

the following two measures,

SSE
(1)
j = min

αj ,γ
E‖Y− αjXj − Zγ‖2 = E‖Y− α(1)

j Xj − Zγ(1)‖2,

SSE
(2)
j = min

αj ,γ
E‖Xj − αjY− Zγ‖2 = E‖Xj − α(2)

j Y− Zγ(2)‖2

where the CSIS method ranks the nodes from low to high using SSE
(1)
j and our ap-

proach using SSE
(2)
j . The following relationship holds for SSE

(1)
j and SSE

(2)
j ,

SSE
(1)
j =

1

α
(1)2
j

E‖Xj + Zγ(2)/α(1)
j − Y/α(1)

j ‖2 ≥ SSE
(2)
j /α

(1)2
j ,

SSE
(2)
j =

1

α
(2)2
j

E‖Y + Zγ(2)/α(2)
j − Xj/α

(2)
j ‖2 ≥ SSE

(1)
j /α

(2)2
j .

This implies that SSE
(1)
j
∼= SSE

(2)
j in the sense that SSE

(1)
j → 0 implies SSE

(2)
j → 0

and vice versa. This indicates when the signal is strong enough, both measures are

able to detect it. As a result, their performances are fairly comparable.

It is noteworthy that although the model (2.4) can be written in a linear regression

form, it cannot be directly estimated by a ordinary least squares estimation. This is

because the response information Y is included in both sides of (2.4). As an alternative,

the screening measure (2.5) allows us to first marginally calculate the dependence of
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Xj with respect to Ỹ = (Y,Z), and then conduct the estimation.

2.3. Screening Consistency Property

Let ΣY = cov(Yt) = (σY,ij) ∈ RN×N . Assume Zit is independently distributed

for 1 ≤ i ≤ N and 1 ≤ t ≤ T with cov(Zit) = ΣZ ∈ Rp×p. In addition, let Et be

independent over t with cov(Et) = σ2
eIN . Define S = I −WD, it can be easily verified

ΣY = cγeS
−1(S−1)>, where cγe = γ>ΣZγ + σ2

e . Before we go into details about the

theoretical properties of the screening procedure, we first clarify the notations. First

define

R2
j =

1

κ1jσY,jj

(κ22j
cy

+
czκ

2
3j

N
+
κ22jc

2
scz

c2yN
− 2κ2jκ3jcscz

cyN

)
, (2.7)

where

κ1j = W>
·jW·j, κ2j = e>j ΣYW·j, κ3j = e>j S

−1W·j,

cz = γ>ΣZΣ̃−1zy ΣZγ, cy = tr(ΣY ), cs = tr(S−1),

Σ̃zy = ΣZ −N−1c−1y c2sΣZγγ
>ΣZ and ej ∈ RN is a vector with the jth element being 1

and others being 0.

Although R2
j defined in (2.7) takes a complex form, but as it will be shown in

Proposition 1, R̂2
j performs as a good approximation for R2

j . Namely, maxj |R̂2
j −

R2
j | →p 0 as N → ∞. Therefore, intuitively, R2

j could be comprehended as the

population version of R̂2
j . Technically, the following conditions are required.

(C1) (Sub-Gaussian Distribution) The random errors εit (1 ≤ i ≤ N, 1 ≤ t ≤ T )

are i.i.d sub-Gaussian random variables with mean zero and scale factor 0 <

σe <∞, i.e., E{exp(δεit)} ≤ exp(σ2
eδ

2/2) for any δ ∈ R. Similarly, let the nodal

covariates Zit (1 ≤ i ≤ N, 1 ≤ t ≤ T ) be i.i.d sub-Gaussian random vectors.

(C2) (Minimum Signal) Let cmin ≥ c as N → ∞ and T → ∞, where cmin =
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minj∈MR2
j and c = O(N ζ−1) defined in (2.6) for 0 < ζ ≤ 1.

(C3) (Regularity) Let 0 < τmin ≤ λmin(ΣY ) ≤ λmax(ΣY ) ≤ τmax, where and τmin

is a finite constant, τmax = O(N τ ) with τ < min{ζ, 1/2} and ζ is defined in

condition (C2).

Condition (C1) is imposed on the distribution of the noise term. It should be noted

that the sub-Gaussian assumption is relaxed than the normality assumption (Wang

et al., 2013). The assumption can be further relaxed to allow weak dependence among

the nodal covariates. Next, Condition (C2) restricts that the signal strength R2
j of

the portal nodes should not be too weak to be detected. Lastly, Condition (C3) is

assumed on the covariance matrix ΣY , which is a uniformity condition (Zhu et al.,

2018b) imposed on the network nodes. Given all the technical conditions, we give the

following proposition.

Proposition 1. Under Conditions (C1)–(C3), further assume T = O{(N2−2ζ logN)ξ}

for ξ > 1, then we have P (maxj |R̂2
j −R2

j | > δ1)→ 0 as N →∞, where δ1 = O(N ζ−1).

The proof of Proposition 1 is given in Appendix A.2 in the supplementary material.

By Proposition 1, we have maxj |R̂2
j − R2

j | →p 0 as N → ∞. Particularly, it requires

that the total time periods should diverge along with N →∞. Subsequently, we show

the screening consistency property of R̂2
j .

Theorem 1. Assume T = O{(N2−2ζ logN)ξ} for ξ > 1. Under conditions (C1)–(C3),

there exists constant c and mmax = O(N1+τ−ζ), such that,

P
(
M⊂ M̂

)
→ 1, (2.8)

P
(
|M̂| ≤ mmax

)
→ 1. (2.9)

as N →∞.
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The proof of Theorem 1 is given in Appendix A.3 in the supplementary material. Note

that to ensure the screening consistency property, we require the diverging rate of T

should be slightly faster than N2−2ζ logN . In addition, by (2.8) and (2.9), we are

implicitly requiring the true model size |M| ≤ |M̂| ≤ mmax. In addition, with respect

to the upper model size mmax, we could have mmax = O(1) if we set ζ = 1 and τ = 0,

which implies a stronger signal in (C2) and a tighter regularity condition in (C3)

Subsequently, we focus on the signal R2
j in condition (C2). In the following proposi-

tion, we connect the assumption to the network structure conditions under the scenario

mini∈M di > 0. This leads to more insights about the topology features of portal nodes.

Proposition 2. Assume dmin
def
= mini∈M di > 0. In addition, assume there exists

constants c1, c2, c3, c4 such that

c1N
ζ ≤ min

j1,j2∈M

(
W>
·j1W·j2

)
≤ max

j1,j2∈M

(
W>
·j1W·j2

)
≤ c2N

ζ , (2.10)

c3N
−1tr(ΣY ) ≤ min

j∈M
σY,jj ≤ max

j∈M
σY,jj ≤ c4N

−1tr(ΣY ) (2.11)

for some 0 < ζ ≤ 1. In addition, assume

min
j1∈M

{
max
j2∈M

(Wj1j2)
}
≥ cw, (2.12)

where cw > 0 is a positive constant. Then condition (C2) holds.

The proof of Proposition 2 is given in Appendix A.4 in the supplementary material.

We next illustrate the conditions (2.10)–(2.12) with more insights. First, it can be

noted W>
·j1W·j2 = (nj1nj2)

−1∑N
i=1 aij1aij2 measures the amount of weighted common

followers of the nodes j1 and j2. Consequently, Condition (2.10) essentially requires

the order of weighted common followers for arbitrary two portal nodes should be in the

order of N ζ . Next, Condition (2.11) states a regularity condition that the rate of σY,jj

for the portal nodes should be both upper and lower bounded by the average level, i.e.,
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N−1tr(ΣY ). Lastly, Condition (2.12) states that certain extent of connectivity should

exist among the portal nodes. Specifically, it requires that for any portal node j1, at

least it should follow one another portal node j2.

3. POST SCREENING ESTIMATION

3.1. Quasi Log-likelihood Estimation

In this section, we discuss the estimation procedure after portal nodes screening.

We treat the post screening set to be M to save notations and assume |M| = m.

Specifically, let dM ∈ Rm collect the coefficients dj in d for j ∈ M. In addition, we

restrict dj = 0 for j 6= M. Define the parameter of interest as θM = (d>M, γ
>)> ∈

Rm+p. We could write down the quasi log-likelihood as

`(θM) = T log |S| − (NT/2) log σ2
e −

1

2σ2
e

{ T∑
t=1

(SYt − Ztγ)>(SYt − Ztγ)
}

(3.1)

with some constants ignored. The quasi maximum likelihood estimator (QMLE) can

be obtained as θ̂M = arg maxθM `(θM). In the following we establish the asymptotic

properties of θ̂M when M covers the true model. We first state the conditions as

follows.

(C4) (Noise Term) Assume E(ε3it) = 0 for all 1 ≤ i ≤ N and 1 ≤ t ≤ T .

(C5) (Regularity) Denote W = W>W/N . In addition, let WM = (Wj1j2 : j1 ∈

M, j2 ∈ M) ∈ Rm×m and ΣY,M = (ΣY,j1j2 : j1 ∈ M, j2 ∈ M) ∈ Rm×m. For

an arbitrary matrix M = (mij) ∈ Rm1×m2 , denote |M |e = (|mij|) ∈ Rm1×m2 .

Assume as N →∞ there exists positive constants 0 < τ1 < τ2 that

τ1 ≤ min{λmin(WM), λmin(ΣY,M)} ≤ max{λmax(WM), λmax(|ΣY,M|e)} ≤ τ2.

(3.2)
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Condition (C4) gives moment conditions on the noise terms. Technically, this condi-

tion is assumed to facilitate the theoretical discussion and could be further relaxed.

Condition (C5) is a regularity condition on the network and covariance structure re-

lated to the nodes in M. Particularly, by requiring λmin(WM) ≥ τ1, we have that

N−2W>
·jW·j is lower bounded by a constant as N →∞ for j ∈M. Then we establish

the following theorem.

Theorem 2. Assume conditions (C1), (C4), (C5). Furthermore, assume m = o(T δ1)

with 0 ≤ δ1 < 1/4. Then we have (a) ‖θ̂M − θM‖ = Op(
√

(NT )−1m); and (b)

√
NT (d̂j − dj) →d N(0, σ2

j ) and
√
NT (γ̂ − γ) →d N(0, σ2

eΣ
−1
Z ), where σ2

j is the jth

diagonal element of Σ−12 Σ1Σ
−1
2 . The forms of Σ1 and Σ2 are given in Appendix A.5.

The proof of Theorem 2 is given in Appendix A.6 in the supplementary material.

The Theorem 2 establishes the consistency and asymptotic normality result for the

QMLE under the scenario that M covers the true model. In practice, the portal

screening procedure tends to over select nodes and include many false positives. To

control the false positive rate, a popular approach is to conduct penalization after the

screening procedure. We introduce the procedure and give a numerical algorithm for

implementation in the next section.

3.2. Penalized Quasi Log-likelihood Estimation

In this section, we provide a penalized quasi log-likelihood estimation procedure

after portal set screening to precisely identify the true portal nodes. Given a regular-

ization parameter λ, the following penalized quasi log-likelihood is considered

Q(θM) = −`
(
θM
)

+
∑
j∈M

pλ
(
|dj|
)
, (3.3)

where pλ(|·|) is the penalty function related to a regularization parameter λ. The wide-

ly used penalty forms include: Lasso (Tibshirani, 1996) with L1 penalty pλ(|θ|) = λ|θ|,
13



bridge regression (Fu, 1998) with Lq penalty pλ(|θ|) = λ|θ|q, q ≥ 1, hard thresholding

penalty pλ(|θ|) = λ2 − (|θ| − λ2)I(|θ| < λ), and many others. As pointed by Fan and

Li (2001), three mathematical properties should be examined for a penalty function,

which are unbiasedness, sparsity, continuity. They conclude that the Lq and hard

thresholding penalties cannot satisfy the three mathematical conditions simultaneous-

ly. As an alternative, they proposed the smoothly clipped absolute deviation (SCAD)

penalty, which could lead to a consistent estimator and enjoy the oracle property. Sub-

sequently, the minimax concave penalty (MCP) is proposed by Zhang et al. (2010),

which equally has the desirable oracle property.

To optimize the non-convex objective functions in SCAD and MCP, several algo-

rithms are designed, for example, the local quadratic/linear approximation (LQA/LLA)

algorithm (Fan and Li, 2001; Zou and Li, 2008), PLUS algorithm, coordinate descent

algorithm (Breheny and Huang, 2011), and many others. Further to deal with the po-

tential issue of multiple local minimizers, both Wang et al. (2013) and Fan et al. (2014)

have proposed possible solutions to revise the LLA algorithm. Theoretically, Fan et al.

(2014) provides a guarantee for the LLA algorithm to obtain the oracle estimator in

the folded concave penalized problem, when it is initialized by an appropriate initial

estimator. Define `(j)(x) = `(x, θ
(−j)
M ) to be a function of `(θ) at dj = x given the other

parameters θ
(−j)
M fixed. Accordingly, let ˙̀(j)(·) and ῭(j)(·) denote the first and second

derivative function of `(j)(·). In this work, we use the framework of the LLA algorithm

to solve (3.3) and state the algorithm in Algorithm 1. The detailed development of

the algorithm is given in Appendix B.1 in the supplementary material.

Given a solution path, a critical problem is to select the tuning parameter λ. Here

we follow Wang et al. (2013) to employ the HBIC criterion, which spells as

HBIC(λ) = `(θ̂M) + |Mλ|
Cn∗ log(q)

n∗
, (3.6)
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Algorithm 1 Local Linear Approximation (LLA) Algorithm

1. Solve the following Lasso problem to obtain the initial estimator θ̂
(0)
M as

θ̂
(0)
M = arg min

θM

{
− `(θM) +

∑
j∈M

λ(0)δ
(0)
j |dj|

}
, (3.4)

where λ(0) = λη with η = 1/ log(NT ) is the initial regularization parameter, and

δ
(0)
j = ῭(j)(d̂

(0)
j ).

2. For m = 0, 1, 2, · · · , repeat the LLA iteration till convergence

(2.a) Update the adaptive weights as w
(m)
j = p′λ(|d̂

(m−1)
j |) for j ∈M.

(2.b) Obtain θ̂
(m+1)
M by solving the following optimization problem

θ̂
(m+1)
M = arg min

θM

{
− `(θM) +

∑
j∈M

w
(m)
j δ

(m)
j |dj|

}
. (3.5)

The series δ
(0)
j , δ

(1)
j , · · · are scaling parameters given by δ

(m)
j = ῭(j)(d̂

(m)
j ).

where `(θ̂M) is the log-likelihood defined in (3.1), q = |M| is the number of nodes

after screening, Mλ = {j : d̂j(λ) 6= 0} is the selected set, n∗ is the effective sample

size, and Cn∗ = log{log(n∗)} is slowly diverging with n∗. To obtain the effective

sample size n∗, we focus on the second order derivative matrix of `(θM) with respect

to dM, i.e., H(θM) = ∂2`(θM)/∂dM∂d
>
M. One could verify that the ∂2`(θ̂M)/∂d2j is

in the order of T (W>
·jW·j) for j ∈ M in the diagonal of H(θM). Therefore, we take

n∗ = T maxj∈Mλ
(W>
·jW·j) to be the effective sample size in (3.6).

Remark 5. If we letM to be the full nodes set, the LLA algorithm could be applied

to identify the portal nodes set directly. Although it is feasible, it might be com-

putationally inefficient and instable numerically (Fan et al., 2009). This is because

optimizing (3.3) is computationally expensive at each iteration since the determinant

of a high dimensional matrix is involved. Moreover, it could take more iterations to

optimize many parameters at the same time and hard to converge. As an alternative,

conducting the screening method (2.5)–(2.6) in the first step is efficient and could

screen out a great portion of unimportant nodes.
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4. NUMERICAL STUDIES

4.1. Simulation Models

To verify the theoretical properties, we present here three simulation examples.

The main difference lies in the generating mechanism of network structures for non-

portal nodes. For the portal nodes, we consider here two typical types. The first

type, which is also the most common type, is the portal nodes with large number of

followers, while the second type only have limited number of followers. We first specify

the first s = 10 nodes as portal nodes. The corresponding coefficients are set to be

(0.3+0.05i : 0 ≤ i ≤ 9)> ∈ R10. Specifically, we set the 5th and 6th portal nodes to be

the second type, and the others to be the first type with nodal in-degrees di = N δ. The

number of followers for the second type is set to be median number of the non-portal

nodes’ in-degrees. In addition, we further randomly select 10 non-portal nodes with

nodal in-degrees di = N δ, who have large number of followers but with zero influential

powers. Two cases with δ = 1/2 and δ = 1/4 are considered respectively.

Subsequently, for each node i at time t, we sample the covariates Zit as follows.

First, sample a multivariate normal random variable Z̃it = (Z̃it,1, · · · , Z̃it,5)> ∈ R5

independently with E(Z̃it) = 0 and cov(Z̃it) = Σz = (σj1j2), where σj1j2 = 0.5|j1−j2|.

Then, the covariates are constructed as Zit = (1, Z̃>it , Yi(t−1), Yi(t−2))
> ∈ R8, where the

last two elements are lag-2 autoregression terms. Accordingly, the coefficients are set

to be (1, γ̃>, 0.5, 0.3)> respectively, where γ̃ = (1, 2, 3, 4, 5)> ∈ R5. Lastly, the noise

term εit is generated from N(0, 1) independently and the responses Yit are generated by

model (2.1) accordingly. We then introduce the following three examples of different

network structures among the remaining non-portal nodes.

Example 1. (Dyad Independence Network) A dyad is defined as Aij = (aij, aji)

where 1 ≤ i < j ≤ N , aij and aji are the entries of A. Holland and Leinhardt (1981)

proposed a generative model for networks based on the independent assumption of
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dyads. Following the model, we set P (Aij = (1, 1)) = 4N−1 to reflect network sparsity.

Therefore, the expected number of the mutually connected dyads (i.e., Aij = (1, 1)) is

O(N). Next, we allow the expected degree of each node to be slowly diverging in the

order of O(N0.2) by setting P (Aij = (1, 0)) = P (Dij = (0, 1)) = 0.5N−0.8. As a result,

the probability of forming a null dyad should be P (Ai,j = (0, 0)) = 1− 4N−1 −N−0.8,

which is close to 1 as the network size N is large.

Example 2. (Stochastic Block Network) One of the most essential structures of

networks is the community structure. Typically, it is assumed that communities are

tightly knit groups with denser connections within the communities, and relatively

sparser connections between the communities (Newman and Girvan, 2004). To model

the community structure, stochastic block model is proposed by Wang and Wong

(1987). In this example, we follow Nowicki and Snijders (2001) to randomly assign

a block label for each node (k = 1, · · · , K), where K ∈ {5, 10} is the total number

of blocks. Then, let P (aij = 1) = 0.9N−1 if i and j belong to the same block, and

P (aij = 1) = 0.3N−1 otherwise. As a result, nodes within the same community are

more likely to be connected, when compared with nodes from different communities.

Example 3. (Power-Law Distribution Network) In a social network, it is com-

monly observed that there exists a small portion of nodes have a large amount of

followers, which are usually referred to as “hubs” (Barabási and Albert, 1999). This

phenomenon leads to the power-law distribution of network degrees (Clauset et al.,

2009). To mimic this phenomenon, we simulate the adjacency matrix A according to

Clauset et al. (2009) as follows. First, we generate the in-degree ni =
∑

j aji for node

i by the discrete power-law distribution, i.e., P (ni = k) = ck−α with a normalizing

constant c and exponent parameter α = 2.5. Here larger α indicates heavier tail of the

distribution. Then, for the ith node, we randomly select ni nodes to be its followers

with aji = 1. Note using the Power-Law distribution network for the non-portal nodes,

we could generate some nodes with large in-degrees but with zero influential powers.

17



4.2. Performance Measurements and Simulation Results

We then evaluate the screening and selection accuracy as well as the estimation

properties. For each example, we consider (a) Median Network with (N, T ) =

(100, 50), (200, 100), and (b) Large Network with (N, T ) = (2000, 200), (5000, 500)

respectively. The experiment is repeated for 100 times. First, we compare the proposed

screening measure with the topology-based screening method (i.e., ranking nodes by

in-degrees). Next, with regards to portal nodes selection, we implement the following

algorithms to obtain the resulting estimator. They are, the Lasso estimator (Tibshi-

rani, 1996), the adaptive Lasso (ALasso) estimator (Zou, 2006; Bühlmann and Van

De Geer, 2011), the SCAD (with a = 3.7) and MCP (with a = 1.5) estimators im-

plemented by Algorithm 1 respectively. To choose the tuning parameter, the HBIC

criterion (3.6) is calculated and applied. For the Large Network, we only imple-

ment the screening method for evaluating the performances. Lastly, the experiment

for the QMLE estimation and inference are given in Appendix B.2.

For each replication, n = [N/ log(N)] nodes with highest R̂2
j are selected as portal

nodes, which is denoted as M̂. We first evaluate the coverage properties for the

screening procedure. The coverage number for the true portal nodes set in the screening

step is computed as TPs =
∑100

r=1 |M̂(r) ∩M|/100, where M̂(r) is the screened set in

the rth replication andM = {j : dj > 0} is the true portal nodes set. To compare the

screening efficiency, we rank the nodes by the screening measurements from high to low,

then we calculate the largest rank of all the portal nodes, i.e., Rr = maxi∈M
∑

j I(R̂2
j >

R̂2
i ), and Rd = maxi∈M

∑
j I(dj > di). Next, for the estimation step, we evaluate the

sparsity recovery and estimation accuracy properties. Let d̂
(r)

M̂(r)
= (d̂

(r)
j : j ∈ M̂(r))

be estimator given M̂(r). Further define M̂(r)
1 = {j ∈ M̂(r) : d̂j 6= 0}. First, the

true positive (TP) is defined as the average number of nonzero coefficients correctly

estimated to be nonzero, i.e., TPe =
∑100

r=1 |M̂
(r)
1 ∩M|/100. The false positive (FP)

is defined as the number of zero coefficients incorrectly estimated to be nonzero, i.e.,
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FPe =
∑100

r=1 |M̂
(r)
1 ∩ M0|/100, where M0 is defined to be true non-portal nodes

set, i.e., M0 = {j : dj = 0}. Lastly, we define TMe to be the proportion of all

replications that the true portal nodes set being exactly identified. To evaluate the

estimation accuracy, we calculate the root mean square error (RMSE) for d and γ

as RMSEd = {n−1
∑

j∈M̂(r)(d̂
(r)
j − dj)

2}1/2 and RMSEγ = {p−1‖γ̂(r) − γ‖2}1/2. The

median of RMSEs for all replications is reported for both estimators. Lastly, the ratio

of average in-degrees for portal nodes versus the non-portal nodes is reported.

The simulation results are given in Table 1–3. First, the TPs for both the screening

and estimation increases as N and T increase. For example, the TPs increases from

9.10 to 9.64 as (N, T ) increases from (100, 50) to (200, 100) for dyad independence

model with δ = 1/4. This corroborates the screening consistency properties. Moreover,

the proposed portal nodes screening method shows higher screening accuracy with

lower Rr compared with Rd, where the performance is consistent for both Median

Network and Large Network.

For the estimation part, as the sample size is increased, all the methods have a

higher probability to identify the true model. With regards to the estimation accuracy,

one could observe that the methods ALasso, MCP, and SCAD perform better than

Lasso with lower RMSE levels. For example, the RMSEd (×102) for ALasso, MCP,

and SCAD are 1.07, 0.64, 1.48, which is much lower than Lasso estimator (i.e., 3.79)

with (N, T ) = (200, 100) for the stochastic block network with δ = 1/4.

4.3. A Sina Weibo Dataset

We next illustrate the portal nodes screening and estimation method using a Sina

Weibo dataset. The data are collected from Sina Weibo (www.weibo.com), which is

the largest Twitter-type social media in mainland China. From the perspective of

managing such online social media platform, identifying the influential users is of

particular interest. It could help to attract active users, launch marketing campaigns,
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increase advertising profits and so on. As a result, it will lead to growing more profits

for the social media platform.

Specifically, a total number ofN = 842 active followers of an MBA program account

are recorded for continuous T = 30 days. The network structure is constructed by

the following relationship of network users, where the network density is 4.5%. The

histograms of the in- and out-degrees are given in Figure 1. It can be observed that

the distribution of in-degrees is much skewer than the out-degrees, which indicates the

existence of influential network users.

The response Yit is defined as the log(1 +x)-transformed Weibo post length for the

ith user at the tth day. To account for the user posting behaviors, several covariates Zit

are taken into consideration. The first one is the lag-1 term Yi(t−1), which accounts for

the autoregressive effect of Yit. Next, the nodal covariates are taken into consideration

to reflect the user characteristics. They are, the gender (male = 1, female = 0), tenure

(i.e., the time length since the registration with Sina Weibo), number of personal

labels, and the user description length. Particularly, the labels and descriptions are

created by the user themselves to describe their life styles, characteristics, and so on.

We first conduct the screening procedure to estimate out the portal node set. The

top 10 user accounts with highest R̂2
j are given by Figure 2. Most of them are celebrities

and online social medias, which has backgrounds of finance, economics, and business.

In addition, we compare the top 20 users selected by the portal nodes screening and

the topology-based method (i.e., ranking nodes using in-degrees). Among them 12 are

selected by both screening methods, while the topology-based screening method also

include the “super stars” in more general backgrounds. For example, a famous Chinese

actress (named Yao Chen) is included in the top 20 list of the degree screening method

but not in ours. In addition, the top 20 portal nodes identified by our approach are

not necessarily with large in-degrees. The smallest in-degree of the top 20 portal nodes

of our approach is 109, which is quite small comparing to last portal node identified
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by the topology-based method (with in-degree 206). That suggests the portal nodes

selected by our method is more related to the user’s specific backgrounds.

Next, the top n = [N/ log(N)] users are kept after screening for further estimation.

Specifically, the estimation methods, i.e., Lasso, ALasso, MCP (a = 1.5), and SCAD

(a = 3.7), are applied. Subsequently, the HBIC criterion is employed to select the

tuning parameter λ. Table 4 gives the QMLE estimation and inference results, where

the listed 15 users are identified as portal nodes by at least one method. Among

them there are nine famous online social media accounts, who release latest news

about business, economics and finance. The other six users are famous celebrities

also in these related fields. The estimated lag-1 autoregressive coefficient is around

0.46, which illustrates a positive momentum effect for user behaviours. For the nodal

covariates, it is found the length of description of the users is positively related to the

user’s activeness level, and is significant under the 5% significance level. However, with

respect to the other covariates (i.e., Gender, Tenure, and Label), we cannot find

any significant evidence showing that they are significantly related to the response.
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Figure 1: The Sina Weibo data analysis. The left panel: histogram of in-degrees for N = 842

nodes. The highly right skewed shape indicates the existence of “super stars” in the network;

The right panel: similar histogram but for out-degrees.

21



● ●

● ● ● ● ● ● ● ●

0.00

0.05

0.10

0.15

0.20

U
se

r1

N
ew

s1

U
se

r2

U
se

r3

Fi
na

nc
e1

U
se

r4

Ec
on

om
ic

s

Fi
na

nc
e2

N
ew

s2

Bu
si

ne
ss

R
 S

qu
ar

e User Type

●
●

Social Media

Personal User

Figure 2: Users with top 10 R̂2
j for Sina Weibo dataset. Most accounts are famous online

social medias. For privacy reasons, only the type of user accounts are shown here in different

colors.

5. CONCLUDING REMARKS

This paper considers a new type network autoregression model. The major contri-

butions of this work are summarized as follows.

• We quantify influential powers in the proposed NAM to represent the heteroge-

neous and sparse nodal influences. This is an essential generalization of tradi-

tional NAM (Chen et al., 2013; Zhu et al., 2017; Huang et al., 2017; Cohen-Cole

et al., 2018) with homogenous influential powers.

• We provide a NAM-based screening method, that is a model-based method, to

identify portal nodes. Comparing with the traditional topology-based methods

(Carrington et al., 2005; Newman, 2010; Scott, 2012), the superiority of NAM-

based screening method is that employs the dynamic response information Yit to

detect portal nodes.

• We prove that the NAM-based screening method has the screening consistency

property. And the asymptotic normality of QMLE is established. These are
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the advantages of NAM-based screening method comparing with the traditional

topology-based methods without any theoretical guarantee.

• We further consider a portal node selection procedure after screening by giving

an LLA algorithm. The finite sample performance is further demonstrated by a

number of numerical studies.

To conclude the article, we discuss several potential future research topics.

First, as we have mentioned, the CSIS based method (Barut et al., 2016) could

be also utilized as a screening measure to detect portal nodes. Then an important

extension is to establish its screening consistency property for the network data. Next,

although the theoretical properties of the portal nodes screening are established, the

post selection and estimation properties remain largely unknown. In addition, the

computation could be further reduced by utilizing the sparsity feature of the network

structure (Zhu et al., 2018a). Since it might be beyond the scope of this work, we add

this direction as an important future research topic.

Next, note that the influential powers defined in this work are associated with the

response types. However, different types of responses might lead to different quan-

tifications of the influential powers. In this work, we use posted tweet length as our

response to quantify the users’ influences, which is also widely used in literature (Chen

et al., 2013; Zhou et al., 2017; Zhu et al., 2017). Other types of responses (e.g., online

time length) could be used in the future works and a unified framework to measure

the users’ influences should be proposed.

Thirdly, the context of network analysis could be more general. The analytical

procedures should also be developed and applied to broaden types of data, for example,

financial time series, gene expression, geographical information, and so on. Moreover,

the NAM model setting in this work could be further generalized. For example, when

the time replications are involved, one could further consider to add fixed effects (e.g.,
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Yu et al. (2008)) as

Yit = αi +
N∑
j=1

djwijYjt + Z>it γ + εit,

where αi denotes the fixed effect. In this case, one could consider to follow the tech-

niques of Yu et al. (2008) to concentrate out the fixed effects for each node i. Next

the screening and selection methods proposed in this work could still be applied. It

could be interesting to study the theoretical properties under the new model settings.
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Table 1: Simulation results (TPs,Rr, Rd,TPe,TMe,RMSE(×102)) for the Median
Network with 100 replications for three examples with δ = 1/2 are reported. The
last column is the ratio of average nodal in-degrees of the portal nodes versus the
non-portal nodes.

(N, T ) TPs Rr Rd Est. TPe FPe TMe RMSEd RMSEγ Ratio

Example 1 : Dyad Independence Network

(100,50) 9.8 17 58 Lasso 9.32 0.02 0.83 9.52 1.31 1.5

ALasso 9.78 0.05 0.95 2.77 0.94

MCP 9.63 0.01 0.82 2.36 0.92

SCAD 9.61 0.01 0.81 3.49 0.95

(200,100) 10 12 96 Lasso 9.9 0 0.9 5.00 0.44 2.0

ALasso 10 0.01 0.99 1.26 0.33

MCP 9.88 0 0.93 1.73 0.33

SCAD 9.8 0 0.8 2.41 0.34

Example 2 : Stochastic Block Model

(100,50) 9.67 24 43 Lasso 9.56 0.06 0.89 7.51 1.66 4.3

ALasso 9.67 0.12 0.89 2.44 0.98

MCP 9.44 0 0.77 2.57 0.93

SCAD 9.53 0 0.86 3.14 0.98

(200,100) 9.92 19 67 Lasso 9.92 0.25 0.77 4.19 0.63 7.3

ALasso 9.92 0.07 0.93 1.48 0.36

MCP 9.92 0 1 0.77 0.33

SCAD 9.92 0.01 0.99 1.11 0.34

Example 3 : Power-law Distribution Network

(100,50) 9.71 21 54 Lasso 9.47 0.03 0.73 8.43 1.16 1.7

ALasso 9.71 0.13 0.88 2.78 0.98

MCP 9.44 0.03 0.7 3.00 0.96

SCAD 9.36 0.03 0.62 4.69 0.98

(200,100) 9.98 16 97 Lasso 9.78 0.01 0.79 6.16 0.43 2.4

ALasso 9.98 0.06 0.94 1.71 0.34

MCP 9.88 0.01 0.89 1.51 0.33

SCAD 9.76 0.01 0.77 2.73 0.34
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Table 2: Simulation results (TPs,Rr, Rd,TPe,TMe,RMSE(×102)) for the Median
Network with 100 replications for three examples with δ = 1/4 are reported. The
last column is the ratio of average nodal in-degrees of the portal nodes versus the
non-portal nodes.

(N, T ) TPs Rr Rd Est. TPe FPe TMe RMSEd RMSEγ Ratio

Example 1 : Dyad Independence Network

(100,50) 9.1 35 84 Lasso 9.05 0.04 0.95 6.69 1.00 0.7

ALasso 9.1 0.03 0.98 2.50 0.91

MCP 9.09 0 0.99 2.00 0.91

SCAD 8.96 0 0.87 3.67 0.91

(200,100) 9.64 36 167 Lasso 9.62 0 0.99 4.25 0.35 0.6

ALasso 9.64 0 1 1.69 0.34

MCP 9.63 0 0.99 1.33 0.33

SCAD 9.4 0 0.76 2.83 0.34

Example 2 : Stochastic Block Model

(100,50) 9.97 12 47 Lasso 9.94 0.06 0.92 5.94 1.10 2.2

ALasso 9.97 0.03 0.97 2.03 0.93

MCP 9.97 0.02 0.98 1.45 0.92

SCAD 9.79 0.01 0.81 3.47 0.94

(200,100) 10 10 75 Lasso 10 0 1 3.79 0.38 2.8

ALasso 10 0 1 1.07 0.34

MCP 10 0 1 0.64 0.33

SCAD 9.93 0 0.93 1.48 0.34

Example 3 : Power-law Distribution Network

(100,50) 9.69 21 54 Lasso 9.68 0.09 0.92 6.73 0.93 0.7

ALasso 9.68 0.1 0.89 3.01 0.90

MCP 9.66 0.06 0.93 2.54 0.90

SCAD 9.4 0.04 0.7 4.67 0.90

(200,100) 9.97 17 95 Lasso 9.97 0.01 0.99 4.83 0.32 0.7

ALasso 9.97 0.05 0.95 1.89 0.32

MCP 9.96 0 0.99 1.38 0.32

SCAD 9.49 0 0.52 3.98 0.32
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Table 3: Simulation results (TPs,Rr, Rd,TPe) for the Large Network with 100
replications for three examples with δ = 1/2 and δ = 1/4 are reported. The Ratio is
average nodal in-degrees of the portal nodes versus the non-portal nodes, and the ND
is the network density.

δ = 1/2 δ = 1/4

(N, T ) TPs Rr Rd Ratio ND (%) TPs Rr Rd Ratio ND (%)

Example 1 : Dyad Independence Network

(2000, 200) 10 11 850 5.73 0.33 10 24 851 0.98 0.31

(5000, 500) 10 11 2271 8.82 0.13 10 10 2270 1.20 0.13

Example 2 : Stochastic Block Model

(2000, 200) 10 14 451 32.82 0.13 10 10 458 5.97 0.09

(5000, 500) 10 15 1025 56.93 0.04 10 10 1031 7.59 0.04

Example 3 : Power-law Distribution Network

(2000, 200) 10 29 978 7.42 0.25 10 24 986 1.14 0.23

(5000, 500) 10 39 2464 11.73 0.10 10 30 2477 1.46 0.09
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Table 4: Estimation result for Sina Weibo dataset. The user account types for the
portal nodes are reported with estimated influential powers. In addition, the estimated
coefficients for nodal covarates are also given. For the last three covariates (i.e., user
labels, tenure, and description), the coefficients are presented with ×103 times. In
addition, the p-values are also reported with p-value less than 0.05 marked by *.

User/Covariates Est. SE p-value

Portal Nodes

News 3.457 0.234 < 0.001*

News 0.963 0.122 0.006*

News 0.724 0.033 < 0.001*

Business 1.560 0.444 0.019*

Business 0.897 0.255 0.076

Business 0.839 0.085 0.004*

Economics 0.643 0.092 0.034*

Economics 0.529 0.120 0.128

Finance 0.697 0.054 0.003*

User 1.431 0.285 0.007*

User 1.280 0.300 0.020*

User 1.155 0.287 0.031*

User 0.800 0.229 0.095

User 0.658 0.162 0.102

User 0.191 0.192 0.663

Covariates Estimation

Intercept 2.669 0.029 < 0.001*

Lag Response 0.462 0.000 < 0.001*

Gender 0.062 0.002 0.129

Labels 0.408 1.656 0.751

Tenure -0.065 0.003 0.258

Description 6.574 0.511 < 0.001*
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